Answer:
C)52g KCl in 100g water at 80°C
Explanation:
A saturated solution is one that contains as much solute as it can dissolve in the presence of excess solute at that particular temperature.
A solutibility curve is a graph that shows the variability with temperature of the solubility of a solute in a given solvent. A solutibility curve can provide information of whether a solution formed frommthe solute and solvent are saturated or not at a given temperature.
From the solubility curve in the attachment below:
A) A saturated solution of NH₄Cl will contain about 52 g solute per 100 g sat 50 °C. Thus, a solution of 40 g NH₄Cl in 100 g water at 50 °C is an unsaturated solution.
B) A saturated solution of SO₂ at 10°C will contain about 70 g of solute in 100 g of water. Thus a solution of 2g SO₂ in 100g water at 10°C is an unsaturated solution.
C) A saturated solution of KCl at 80 °C will contain about 52 g of solute in 100 g of water. Thus, a solution of 52g KCl in 100g water at 80°C is a saturated solution.
D) A saturated solution of Kl at 20 °C will contain about 145 g of solute in 100 g of water. Thus, a solution of 120g KI in 100g water at 20°C is an unsaturated solution.
Answer:
Detail is given below
Explanation:
Atomic radii trend along group:
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
In A we can see that there is one positive charge and force of attraction is 2.30×10⁻⁸ N and distance is 0.10 nm
In B we can see that negative charge is further away from nucleus because of greater distance thus force of attraction will be less. 0.58×10⁻⁸ N
In C this distance further increases and force also goes in decreasing 0.26×10⁻⁸ N.
Answer:
What are the advantages of titration?
Titrimetric analysis commonly referred to as volumetric analysis offers distinct advantages over cumbersome gravimetric methods:
Speed of analysis.
Instantaneous completion of reactions.
Greater accuracy due to minimization of material loss involved in decanting, filtration, precipitation or similar operations.
Explanation:
Disadvantages
It is a destructive method often using up relatively large quantities of the substance being analysed.
It requires reactions to occur in a liquid phase, often the chemistry of interest will make this inappropriate.
It can produce significant amounts of chemical waste which has to be disposed of.
It has limited accuracy.
<em>hope </em><em>this </em><em>helps </em><em>Plea</em><em>se</em><em> </em><em>inform</em><em> </em><em>me</em><em> </em><em>if</em><em> </em><em>its</em><em> </em><em>help</em><em>ful</em><em> </em>
<span>the best answer is C i.e is ionoic compound. but all other option sare quite close enough but option B is sure wrong. because A molecular compound does not separate in a solvent.</span>
Answer:
Water
Explanation:
Hydrogen and oxygen is bonded together to make H2O aka. water