Work is defined energy transferred from one to another.
The formula for work done is work done = force x distance
So in our problem, force is equal to 80 kg/ m / s^2 and distance is equal to 1.25 meters. So plugging in our values will give us:
work done = 80 kg/ m/ s^2 * 1.25 m
= 100.00 J is the answer.
So its temperature will not rise, since kinetic energy of molecules remains the same. The quantity of heat absorbed or released when a substance changes its physical phase at constant temperature (e g. From solid to liquid at melting point or from liquid to gas at boiling point) is termed as its latent heat.
Answer:
B
Explanation:
I hope it helps you good luck
We will use the expression for freezing point depression ∆Tf
∆Tf = i Kf m
Since we know that the freezing point of water is 0 degree Celsius, temperature change ∆Tf is
∆Tf = 0C - (-3°C) = 3°C
and the van't Hoff Factor i is approximately equal to 2 since one molecule of KCl in aqueous solution will produce one K+ ion and one Cl- ion:
KCl → K+ + Cl-
Therefore, the molality m of the solution can be calculated as
3 = 2 * 1.86 * m
m = 3 / (2 * 1.86)
m = 0.80 molal
Answer:
You have been asked to draw a Bohr model of the element carbon. How would you arrange the dots that represent electrons? They would be embedded in a solid core. They would be in rings around the nucleus