1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adoni [48]
3 years ago
14

A medical treatment where the individual breathes in pure oxygen while in a pressurized room or through a tube. This increased p

ressure and oxygen molecules allows the lungs to receive more oxygen than usual.
Physics
1 answer:
Leto [7]3 years ago
5 0
Hyperbaric Oxygen Therapy (HBOT) is a medical treatment where the individual breathes in pure oxygen while in a pressurized room or through a tube. The HBOT treatment includes breathing 100% oxygen while under increased atmospheric pressure. It is used <span>for decompression sickness by scuba divers.</span>
You might be interested in
How do you make a iPad I can text and stuff and don't understand how
tigry1 [53]
Circuit board stuff
4 0
3 years ago
Read 2 more answers
A man walking on a tightrope carries a long a pole which has heavy items attached to the two ends. If he were to walk the tight-
katen-ka-za [31]

Answer:

 I_weight = M L²

this value is much larger and with it it is easier to restore balance.I

Explanation:

When man walks a tightrope, he carries a linear velocity, this velocity is related to the angular velocity by

            v = w r

For man to maintain equilibrium needs the total moment to be zero

             ∑τ = I α

              S  τ = 0

The forces on the home are the weight of the masses, the weight of the man and the support on the rope, the latter two are zero taque the distance to the center of rotation is zero.

Therefore the moment of the masses and the open is the one that must be zero.

If the man carries only the bar, we could approximate it by two open one on each side of the axis of rotation formed by the free of the rope

              I = ⅓ m L² / 4

As the length of half the length of the bar and the mass of the bar is small, this moment is small, therefore at the moment if there is some imbalance it is difficult to recover.

If, in addition to the opening, each of them carries a specific weight, the moment of inertia of this weight is

             I_weight = M L²

this value is much larger and with it it is easier to restore balance.

5 0
3 years ago
A large spool in an electrician's workshop has 65 m of insulation-coated wire coiled around it. When the electrician connects a
Art [367]

Answer:

40.34\ \text{m}

Explanation:

L_1 = Length of wire = 65 m

I_1 = Initial current = 1.8 A

I_2 = Final current = 2.9 A

We know

R\propto \dfrac{1}{I}

and

R\propto L

\dfrac{V}{I}\propto L\\\Rightarrow L\propto \dfrac{1}{I}

so

\dfrac{L_2}{L_1}=\dfrac{I_1}{I_2}\\\Rightarrow L_2=\dfrac{I_1}{I_2}L_1\\\Rightarrow L_2=\dfrac{1.8}{2.9}\times 65\\\Rightarrow L_2=40.34\ \text{m}

The length of the wire remaining on the spool is 40.34\ \text{m}.

8 0
3 years ago
In what direction is the weight vector always drawn?​
Varvara68 [4.7K]

Yo sup??

The weight vector is usually drawn vertically downwards from the centre of the body.

It can be respectively resolved as well.

Hope this helps

3 0
3 years ago
10. How far does a transverse pulse travel in 1.23 ms on a string with a density of 5.47 × 10−3 kg/m under tension of 47.8 ?????
KATRIN_1 [288]

Answer: Tension = 47.8N, Δx = 11.5×10^{-6} m.

              Tension = 95.6N, Δx = 15.4×10^{-5} m

Explanation: A speed of wave on a string under a tension force can be calculated as:

|v| = \sqrt{\frac{F_{T}}{\mu} }

F_{T} is tension force (N)

μ is linear density (kg/m)

Determining velocity:

|v| = \sqrt{\frac{47.8}{5.47.10^{-3}} }

|v| = \sqrt{0.00874 }

|v| = 0.0935 m/s

The displacement a pulse traveled in 1.23ms:

\Delta x = |v|.t

\Delta x = 9.35.10^{-2}*1.23.10^{-3}

Δx = 11.5×10^{-6}

With tension of 47.8N, a pulse will travel Δx = 11.5×10^{-6}  m.

Doubling Tension:

|v| = \sqrt{\frac{2*47.8}{5.47.10^{-3}} }

|v| = \sqrt{2.0.00874 }

|v| = \sqrt{0.01568}

|v| = 0.1252 m/s

Displacement for same time:

\Delta x = |v|.t

\Delta x = 12.52.10^{-2}*1.23.10^{-3}

\Delta x = 15.4×10^{-5}

With doubled tension, it travels \Delta x = 15.4×10^{-5} m

4 0
3 years ago
Other questions:
  • How to win friends and influence people
    12·1 answer
  • A 0.134-A current is charging a capacitor that has square plates 6.00 cm on each side. The plate separation is 4.00 mm. (a) Find
    7·1 answer
  • A piece of unknown metal with mass 68.6 g is heated to an initial temperature of 100 °C and dropped into 84 g of water (with an
    7·2 answers
  • The warmest layer of Earth's atmosphere is the ___.
    7·1 answer
  • Element X has five valence electrons, element Y has one valence electron, and element Z has one valence electron. Which two of t
    6·2 answers
  • Which Legal right is available to criminal defendants but not civil defendants ?
    9·1 answer
  • A nonconducting sphere has radius R = 2.81 cm and uniformly distributed charge q = +2.35 fC. Take the electric potential at the
    7·1 answer
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
    15·1 answer
  • A dog is running. His human calls to him and he accelerates at 2.74 m/s/s. 3.63 seconds later, his velocity is 10.3 m/s. What wa
    12·1 answer
  • P6.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!