Hello!
We use the amount in grams (mass ratio) based on the composition of the elements, see: (in 100 g solution)
C: 83.7% = 83,7 g
H: 16.3% = 16.3 g
Let us use the above mentioned data (in g) and values will be converted to amount of substance (number of moles) by dividing by molecular mass (g / mol) each of the values, lets see:


We note that the values found above are not integers, so let's divide these values by the smallest of them, so that the proportion is not changed, let's see:


Note: So the ratio in the smallest whole numbers of carbon to hydrogen is 3:7, t<span>hus, the minimum or empirical formula found for the compound will be:
</span>
I hope this helps. =)
Answer:
n = 2.58 mol
Explanation:
Given data:
Number of moles of argon = ?
Volume occupy = 58 L
Temperature = 273.15 K
Pressure = 1 atm
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
1 atm × 58 L = n × 0.0821 atm.L/ mol.K × 273.15 K
58 atm.L = n × 22.43 atm.L/ mol.
n = 58 atm.L / 22.43 atm.L/ mol
n = 2.58 mol
There are 4 moles of spectator ions that remain in solution.
The equation of the reaction is;
Na2CO3(aq) + Pb(NO3)2(aq) -------> PbCO3(s) + 2NaNO3(aq)
We have to determine the limiting reactant. This is the reactant that yields the least amount of product. Note that the spectator ions are Na^+ and NO3^- that form NaNO3.
For Na2CO3
1 mole of Na2CO3 yields 2 moles of NaNO3
3 moles of Na2CO3 yields 3 × 2/1 = 6 moles of NaNO3
For Pb(NO3)2
1 mole of Pb(NO3)2 yields 2 moles of NaNO3
2 moles of Pb(NO3)2 yields 2 × 2/1 = 4 moles of NaNO3
We can see that Pb(NO3)2 is the limiting reactant.
Since [NaNO3] = [Na^+] = [NO3^-], it follows that there are 4 moles of spectator ions that remain in solution.
Learn more: brainly.com/question/22885959
Answer:
Newton's third law of motion states that every action, there is an equal and opposite reaction force and that forces come in pairs
Answer:
iron sulfate
Explanation:
Electrostatic attraction as bonds between ions is characteristic of the electrovalent bond or the ionic bond
In this type of bond, there is electron transfer from one atom to another. The atom that looses electrons become positively charged while the atom that gains electrons becomes negatively charged.
In iron sulfate, there is electrostatic attraction between Fe II ions and sulphate ions, making iron sulfate an ionic compound.