Answer:
Acceleration = 3.5 m.s⁻²
Explanation:
Definition:
The acceleration is rate of change of velocity of an object with respect to time.
Formula:
a = Δv/Δt
a = acceleration
Δv = change in velocity
Δt = change in time
Units:
The unit of acceleration is m.s⁻².
Acceleration can also be determine through following formula,
F = m × a
a = F/m
Given data:
Force = 35 N (N = Kg. m.s⁻²)
Mass = 10.0 Kg
a = ?
Formula:
a = F/m
a = 35 Kg. m.s⁻²/ 10.0 Kg
a = 3.5 m.s⁻²
The answer is 14.22 mg / (mm^2)
Answer:
59.8%
Explanation:
First find the Mr of manganese (III) nitrate.
Mr of Mn(NO₃)₃ = 54.9 + (14 × 3) + (16 × 3 × 3) = <u>240.9</u>
Since we have to find the percentage composition of oxygen, we need to find the Mr of oxygen in the compound, which is:
Mr of (O₃)₃ = (16 × 3) × 3 = <u>144</u>
Now we can find percentage composition / percentage by mass of oxygen.
% composition =
× 100
% composition =
× 100 = <u>59.776%</u>
∴ % compostion of oxygen in maganese(III)nitrate is 59.8% (to 3 significant figures).
Answer:
is a reactant; it is present before the reaction occurs.
Explanation:
In a chemical reaction the chemical formulas written before the arrow are described as reactants as they react together to form products which are written after the arrow.

Thus
and HCl are reactants here whereas
,
and
are products.
Answer:
See explanation
Explanation:
For this question, we have to remember the effect of an atom with high <u>electronegativity</u> as "Br". If the "Br" atom is closer to the carboxylic acid group (COOH) we will have an <u>inductive effect</u>. Due to the electronegativity of Br, the electrons of the C-H bond would be to the Br, then this bond would be <u>weaker</u> and the compound will be more acid (because is easier to produce the hydronium ion
).
With this in mind, for A in the last compound, we have <u>2 Br atoms</u> near to the acid carboxylic group, so, we will have a high inductive effect, then the C-H would be weaker and we will have <u>more acidity</u>. Then we will have the compound with only 1 Br atom and finally, the last compound would be the one without Br atoms.
In B, the difference between the molecules is the <u>position</u> of the "Br" atom in the molecule. If the Br atom is closer to the acid group we will have a <u>higher inductive effect</u> and more <u>acidity</u>.
See figure 1
I hope it helps!