Answer:
Yes, it is possible.
Explanation:
A diprotic acid is an acid that can release two protons. That's why it is called diprotic.
Monoprotic → Release one proton, for example Formic acid HCOOH
Triprotic → Releases three protons, for example H₃PO₄
Polyprotic → Release many protons, for example EDTA
it is a weak acid.
In the first equilibrum, it release proton, and the second is released in the second equilibrium. So the first equilibrium will have a Ka1
H₂A + H₂O ⇄ H₃O⁺ + HA⁻ Ka₁
HA⁻ + H₂O ⇄ H₃O⁺ + A⁻² Ka₂
The HA⁻ will work as an amphoterous because, it can be a base or an acid, according to this:
HA⁻ + H₂O ⇄ H₃O⁺ + A⁻² Ka₂
HA⁻ + H₂O ⇄ OH⁻ + H₂A Kb₂
Answer:
Reducing or increasing the amount of H+ ions / hydronium (H3O+) ions
Explanation:
To reduce the pH (reducing the strength of the acid) can be done by adding a base (including a conjugate base such as bicarbonate ion) which will absorb the H+ ions either through adsorption or reaction.
Adding more H+ decreases the pH of the acid making it stronger. This can be done by adding HCL that will dissociate and increase the H+ ions.
At STP volume is 22.4 L
Molar mass NO₂ = 46.0 g/mol
1 mole ---------- 22.4 L
? mole ---------- 11.4 L
moles = 11.4 * 1 / 22.4
moles = 11.4 / 22.4
= 0.5089 moles of NO₂
Mass NO₂ :
moles NO₂ * molar mass
0.5089 * 46.0
= 23.4094 g of NO₂
hope this helps!
Depending on what chemicals you use it slows the reaction