Answer:
The temperature of the windings are 60.61 °C
Explanation:
Step 1: Data given
Resistance = 50 Ω
Temperature = 20.0 °C
After the motor has run for several hours the resistance rises to 58Ω.
Step 2: Calculate the new temperature
Formula: R = Rref(1 + α(T-Tref))
⇒with α = temperature coëfficiënt of Cupper at 20 °C = 0.00394/°C
⇒with Tref = reference temperature = 20°C
⇒with T = end temperature = TO BE DETERMINED
⇒with R = resistance at end temperature = 58Ω
⇒with Rref = resistance at reference temperature = 50 Ω
==> T = (R/Rref - 1)/α + Tref
T = (58/50) - 1 )/ 0.00394 + 20
T = 60.61 °C
The temperature of the windings are 60.61 °C
Answer:
Multiply the time by the acceleration due to gravity to find the velocity when the object hits the ground. If it takes 9.9 seconds for the object to hit the ground, its velocity is (1.01 s)*(9.8 m/s^2), or 9.9 m/s.
Explanation:really sorry if it wrong,i mean reallyyyyy
look it up on Google I will give you the answer
Answer:
Thats the third law______
When it's at its highest temperature