Answer:
474.3 cm³
Explanation:
Given data:
Initial volume of chlorine gas = 568 cm³
Initial temperature = 25°C
Final volume = ?
Final temperature = -25°C
Solution:
Initial temperature = 25°C (25+273 = 297 K)
Final temperature = -25°C (-25 +273 = 248 K)
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 568 cm³ × 248 K /297 K
V₂ = 140864 cm³.K / 297 K
V₂ = 474.3 cm³
Answer:
no
Explanation:
it is not endothermic reaction
Answer:
Hydrogen may not be advantageous as a fuel because...
- Its expensive
- Its difficult to store
- Its highly flammable
- Its dependent on fossil fuels
Explanation:
Its expensive - Not only is hydrogen gas expensive, but it also takes a lot of work to free from other elements. It is both expensive and time-consuming to produce.
Its difficult to store - Moving hydrogen is not an easy task. Moving anything more than small amounts of hydrogen was also very expensive, making it impractical.
Its highly flammable - When exposed to the atmosphere, hydrogen could potentially form explosive mixtures.
Its dependent on fossil fuels - Hydrogen energy itself is renewable. However, the process of separating it from oxygen uses non-renewable sources such as coal and oil.
~Hope this Helps!~
Answer:trifluoromethanesulfonic acid (CF3SO3H).
Explanation:
The trifluoromethanesulfonic acid (CF3SO3H) has a halogen atom which stabilizes the leaving group by withdrawal of charge from the SO3- moiety. The methanesulfonic acid (CH3SO3H) contains an electron pushing group which tends to destabilize the charge centre. The better leaving group will be the stabilized anion which in this case is trifluoromethanesulfonic acid (CF3SO3H). This typifies the role of stabilizing factors in formation of chemical species.
Answer:
1). 107.2L
Explanation:
The idea here is that if all the gases thaction are kept under te same conditions for pressure and temperature, then you can treat the mole ratios that exist between them as volume ratios.