The given question is incorrect. The correct question is as follows.
If 20.0 g of
and 4.4 g of
are placed in a 5.00 L container at
, what is the pressure of this mixture of gases?
Explanation:
As we know that number of moles equal to the mass of substance divided by its molar mass.
Mathematically, No. of moles = 
Hence, we will calculate the moles of oxygen as follows.
No. of moles = 
Moles of
=
= 0.625 moles
Now, moles of 
= 0.1 moles
Therefore, total number of moles present are as follows.
Total moles = moles of
+ moles of 
= 0.625 + 0.1
= 0.725 moles
And, total temperature will be:
T = (21 + 273) K = 294 K
According to ideal gas equation,
PV = nRT
Now, putting the given values into the above formula as follows.
P =
= 
=
atm
= 3.498 atm
or, = 3.50 atm (approx)
Therefore, we can conclude that the pressure of this mixture of gases is 3.50 atm.
Original molarity was 1.7 moles of NaCl
Final molarity was 0.36 moles of NaCl
Given Information:
Original (concentrated) solution: 25 g NaCl in a 250 mL solution, solve for molarity
Final (diluted) solution: More water is added to make the new total volume 1.2 liters, solve for the new molarity
1. Solve for the molarity of the original (concentrated) solution.
Molarity (M) = moles of solute (mol) / liters of solution (L)
Convert the given information to the appropriate units before plugging in and solving for molarity.
Molarity (M) = 0.43 mol NaCl solute / 0.250 L solution = 1.7 M NaCl (original solution)
2. Solve for the molarity of the final (diluted) solution.
Remember that the amount of solute remains constant in a dilution problem; it is just the total volume of the solution that changes due to the addition of solvent.
Molarity (M) = 0.43 mol NaCl solute / 1.2 L solution
Molarity (M) of the final solution = 0.36 M NaCl
I hope this helped:))
The answer is .00834 cg hopefully this helped
Answer:
Water outside the cell will flow inwards by osmosis to attain equilibrium
Explanation:
In the hypotonic environment, the concentration of water is greater outside the cell and the concentration of solute is higher inside. A solution outside of a cell has a lower concentration of solutes relative to the cytosol.
If concentrations of dissolved solutes are greater inside the cell, the concentration of water inside the cell is correspondingly lower. As a result, water outside the cell will flow inwards by osmosis to attain equilibrium.
Osmosis is a process by which molecules of a solvent tend to pass from a less concentrated solution into a more concentrated one through a semipermeable membrane.