The potential energy of the products is higher than the potential energy of the reactants.
Let's think, if you have a candle ( that is not blown out ) the physical properties are the candles mass and hence ( hence of the candle is the stiffness of the candle), weight, length, density, surface friction ( force resisting the relative motion of solid surface), and the energy content. You then, need to go to bed, so, therefore, you want to blow the candle out. Once you blow the candle out, the candle is evidently going to have at least a couple of different physical properties, than before it was blown out. The physical properties are a different color, the length of the candle, the texture, you could also apply the mass of the candleholder, and then, the mass of the candleholder and the candle, last but not least, the mass of just the candle. Once you observe the candle, you should be able to plug in those observations into the physical properties. As to, because you asked' what are the physical properties of a candle that has been blown out... We are going to assume that we did observe the candle, and the length of the candle in cm, after being blown out is 30cm. (12 inches; customary). Next, that the color of the candle is the same (let us say the original color is taffy pink). We can then say that the texture of the candle is waxy and the top and smooth as you get to the bottom ( the texture depends on how long the candle was burning, but we are saying that we lit the candle, and then immediately blew the flame out ) . We now have the mass of the candleholder, which will scientificity stay the same. Now, for the mass of the candleholder and the candle, that all depends of how long you let it burn ( remember, we are saying we lit the wick and then immediately blew the fame out ). So, the candle really didn't change is mass, so, therefore, wouldn't affect the mass of the candleholder including the candle. That also goes to the mass of the candle.
Answer:
An opinion is a statement describing a personal belief or thought that cannot be tested (or has not been tested) and is unsupported by evidence. ... Theories are not described as true or right, but as the best-supported explanation of the world based on evidence.
<span> It is important to keep the NaOH solution covered at all time because sodium hydroxide is a very good remover of Carbon dioxide from the air means sodium hydroxide absorbs the carbon dioxide from the air react with that so the concentration of your solution will also change if you uncover the NaOH.
The following reaction occurs when sodium hydroxide reacts with carbon dioxide;
</span><span>2 NaOH(aq) + CO2(g) --> Na3CO3(aq) + H2O(l) </span>