Answer:
The initial volume in mL is 5959.2 mL
Explanation:
As the number of moles of a gas increases, the volume also increases. Hence, number of moles and volumes are directly proportional i.e
n ∝ V
Where n is the number of moles and V is the volume
Then, n = cV
c is the proportionality constant
∴n/V = c
Hence n₁/V₁ = n₂/V₂
Where n₁ is the initial number of moles
V₁ is the initial volume
n₂ is the final number of moles
and V₂ is the final volume.
From the question,
n₁ = 0.693 moles
V₁ = ?
n₂ = 0.928 moles
V₂ = 7.98 L
Putting the values into the equation
n₁/V₁ = n₂/V₂
0.693 / V₁ = 0.928 / 7.98
Cross multiply
∴ 0.928V₁ = 0.693 × 7.98
0.928V₁ = 5.53014
V₁ = 5.53014/0.928
V₁ = 5.9592 L
To convert to mL, multiply by 1000
∴ V₁ = 5.9592 × 1000 mL
V₁ = 5959.2 mL
Hence, the initial volume in mL is 5959.2 mL
Answer:
<em>For both cases the answer is C</em>
Explanation:
We can see that the orbitals are not filled in the order of increasing energy and the Pauli exclusion principle is violated because it does not follow the correct order of the electron configuration; In the first exercise after the 2s2 orbital, the 2p2 orbital follows.
For the second exercise, you must start in order with level 1 and correctly filling each of the sublevels corresponding to each level until reaching level 7 and thus completing the desired number of electrons.
Answer:
Explanation:
To calculate the cell potential we use the relation:
Eº cell = Eº oxidation + Eº reduction
Now in order to determine which of the species is going to be oxidized, we have to remember that the more the value of the reduction potential is negative, the greater its tendency to be oxidized is. In electrochemistry we use the values of the reductions potential in the tables for simplicity because the only thing we need to do is change the sign of the reduction potential for the oxized species .
So the species that is going to be oxidized is the Aluminium, and therefore:
Eº cell = -( -1.66 V ) + 0.340 V = 5.06 V
Equally valid is to write the equation as:
Eº cell = Eº reduction for the reduced species - Eº reduction for the oxidized species
These two expressions are equivalent, choose the one you fell more comfortable but be careful with the signs.