The maximum radiation pressure exerted by sunlight in space on a flat black surface is 4.5 ×
P a. So, the correct option is (b).
Radiation pressure is the name for the force electromagnetic wave particles exert on a surface. It is inversely related to the wave's speed. Given data
Solar constant ( S ) = 1350W / m ^2
Now, the radiaton pressure is given by
P = 2 S /c
where c is the speed of the light
P = 2 × 1350 /3 × 10 ^8
P = 9 ×
P a
For a black surface, P = 4.5×
P a
Therefore, maximum radiation pressure exerted by sunlight in space on a flat black surface is 4.5 ×
P a
Learn more about radiation pressure here;
brainly.com/question/23972862
#SPJ4
I believe the correct answer is A) 6
I believe the balanced chemical equation is:
C6H12O6 (aq) + 6O2(g)
------> 6CO2(g) + 6H2O(l)
First calculate the
moles of CO2 produced:
moles CO2 = 25.5 g
C6H12O6 * (1 mol C6H12O6 / 180.15 g) * (6 mol CO2 / 1 mol C6H12O6)
moles CO2 = 0.8493 mol
Using PV = nRT from
the ideal gas law:
<span>V = nRT / P</span>
V = 0.8493 mol *
0.08205746 L atm / mol K * (37 + 273.15 K) / 0.970 atm
<span>V = 22.28 L</span>
Energy required=mass*specific heat*temperature change
=10*4.184*57.2
=2393.248j
=2.39*10^3