Answer:
Q = 10.8 KJ
Explanation:
Given data:
Mass of Al= 100g
Initial temperature = 30°C
Final temperature = 150°C
Heat required = ?
Solution:
Specific heat of Al = 0.90 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 150°C - 30°C
ΔT = 120°C
Q = 100g×0.90 J/g.°C× 120°C
Q = 10800 J (10800j×1KJ/1000 j)
Q = 10.8 KJ
Answer:
Prompt Neutrons
Explanation:
Principle. Using uranium-235 as an example, this nucleus absorbs thermal neutrons, and the immediate mass products of a fission event are two large fission fragments, which are remnants of the formed uranium-236 nucleus. These fragments emit two or three free neutrons (2.5 on average), called prompt neutrons.
Answer:
<em><u>Glass that will sink</u></em>
- alkali zinc borosilicate with a density of 2.57 g/mL in a solution with a density of 2.46 g/mL
- potash soda lead with a density of 3.05 g/mL in a solution with a density of 1.65 g/mL
<em><u>Glass that will float</u></em>
- soda borosilicate with a density of 2.27 g/mL in a solution with a density of 2.62 g/mL
- alkali strontium with a density of 2.26 g/mL in a solution with a density of 2.34 g/mL
<em><u>Glass that will not sink or float</u></em>
- potash borosilicate with a density of 2.16 g/mL in a solution with a density of 2.16 g/mL
Explanation:
Density is the property of matter that states the ratio of the amount of matter, its mass, to the space occupied by it, its volume.
So, the mathematical expression for the density is:
By comparing the density of a material with the density of a liquid, you will be able to determine whether object will float, sink, or do neither when immersed in the liquid.
The greater the density of an object the more it will try to sink in the liquid.
As you must have experienced many times an inflatable ball (whose density is very low) will float in water, but a stone (whose denisty is greater) will sink in water.
The flotation condition may be summarized by:
- When the density of the object < density of the liquid, the object will float
- When the density of the object = density of the liquid: the object will neither float nor sink
- When the density of the object > density of the liquid: the object will sink.
<em><u>Glass that will sink</u></em>
- alkali zinc borosilicate with a density of 2.57 g/mL in a solution with a density of 2.46 g/mL, because 2.57 > 2.46.
- potash soda lead with a density of 3.05 g/mL in a solution with a density of 1.65 g/mL, because 3.05 > 1.65.
<u><em>Glass that will float</em></u>
- soda borosilicate with a density of 2.27 g/mL in a solution with a density of 2.62 g/mL, because 2.27 < 2.62.
- alkali strontium with a density of 2.26 g/mL in a solution with a density of 2.34 g/mL, because 2.26 < 2.34.
<em><u>Glass that will not sink or float</u></em>
- potash borosilicate with a density of 2.16 g/mL in a solution with a density of 2.16 g/mL, because 2.16 = 2.16
The salt doesn't dissolve at that temperature. heating aids in dissolving