Answer: 70.0°C
Explanation:
Quantity of heat = Mass * Specific heat * Change in temperature
Quantity of heat = 104.6 KJ
Mass = 500.0 g
Specific heat of water is 4.18 J/g°C
Change in temperature assuming final temperature is x = x - 20
Units should be in grams and joules:
104,600 = 500 * 4.18 * (x - 20)
104,600 = 2,090 * (x - 20)
x - 20 = 104,600/2,090
x = 104,600/2,090 + 20
x = 69.8
= 70.0°C
75% i think it is consumers
25% i think it is producer
<h3>
Answer:</h3>
Balanced equation: 4Fe + 3O₂ → 2Fe₂O₃
Moles of oxygen gas = 9 moles
<h3>
Explanation:</h3>
To answer the question;
- We first write the balanced equation between iron metal and Oxygen
- The balanced equation is given as;
4Fe + 3O₂ → 2Fe₂O₃
- We are given 6 moles of Fe₂O₃
We are required to determine the number of moles of oxygen needed to form 6 moles of Fe₂O₃.
- From the equation, 3 moles of oxygen gas reacts to produce 2 moles of Fe₂O₃
- This means, the mole ratio of O₂ to Fe₂O₃ is 3 : 2
Therefore; Moles of O₂ = Moles of Fe₂O₃ × 3/2
Hence, moles of oxygen = 6 moles × 3/2
= 9 moles
Thus, Moles of Oxygen needed is 9 moles
To solve this we use the equation,
M1V1 = M2V2
where M1 is the concentration of the stock solution, V1 is the volume of the stock solution, M2 is the concentration of the new solution and V2 is its volume.
.675 M x V1 = .25 M x 1.3 L
V1 = 0.48 L or 480 mL
0.33g
Explanation:
Given parameters:
Diameter of cylinder = 0.234cm
length = 2.697cm
unknown:
mass of the cylinder = ?
Solution:
To solve this problem, we know that density of the aluminium can be determined and it is a constant.
Density is the mass per unit volume of a substance
Density = 
Mass of the cylinder = density x volume
To calculate the volume of cylinder;
Volume = π r² h
radius of the cylinder =
= 0.12cm
Volume = 3.142 x 0.12² x 2.697 = 0.12cm³
Density of aluminium = 2.7g/cm³
Mass of the cylinder = 0.12 x 2.7 = 0.33g
learn more:
Density brainly.com/question/2690299
#learnwithBrainly