Answer:
It maintains a constant internal temperature.
Explanation:
Our body tries its hardest to maintain a constant internal temperature. This is because if we get to warm or cold it is unhealthy. If your body senses that it is getting to warm or cold it will try to correct itself.
Answer: 3378.4mL
Explanation:
density of Gasoline = 0.74g/mL.
Volume of gasoline in milliliter = ?
mass of gasoline = 2.5kg
(Since density is in grams per millilitre, convert mass in kilograms to grams)
If 1kg = 1000grams
2.5kg = 2.5 x 1000 = 2500grams
Recall that density is obtained by dividing the mass of a substance by its volume
i.e Density = Mass / Volume
0.74g/mL = 2500grams/Volume
Volume = (2500 grams / 0.74g/mL)
Volume = 3378.4mL
Thus, the volume of gasoline is 3378.4mL
The compound's molecular formula is C2H6. This is obtained by:
mass moles divided by smallest moles
C 32g 32/12 = 2.67 1
H 8g 8/1.01 = 7.92 approx. 3
Next, divide both terms by the smallest number of moles, 2.67. This gives 1 and 3. So the empirical formula is CH3 which has a molar mass of 15g/mol. Given the molar mass of the molecular formula as 30g/mole, we can calculate the factor by which to multiply the subscripts of CH3.
X = molar mass of molecular formula / molar mass of empirical formula = 30/15
X=2
So (CH3)2 is C2H6.
I think that is called a Metamorphic rock.
Answer:
The rate at which
is being produced is 0.0228 M/s.
The rate at which
is being consumed is 0.0912 M/s.
Explanation:

Rate of the reaction : R
![R=\frac{-1}{4}\frac{d[PH_3]}{dt}=\frac{1}{6}\frac{d[H_2]}{dt}=\frac{1}{1}\frac{d[P_4]}{dt}](https://tex.z-dn.net/?f=R%3D%5Cfrac%7B-1%7D%7B4%7D%5Cfrac%7Bd%5BPH_3%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH_2%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B1%7D%5Cfrac%7Bd%5BP_4%5D%7D%7Bdt%7D)
The rate at which hydrogen is being formed = ![\frac{d[H_2]}{dt}=0.137 M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BH_2%5D%7D%7Bdt%7D%3D0.137%20M%2Fs)
![R=\frac{1}{6}\frac{d[H_2]}{dt}](https://tex.z-dn.net/?f=R%3D%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7Bd%5BH_2%5D%7D%7Bdt%7D)

The rate at which
is being produced:
![R=\frac{1}{1}\frac{d[P_4]}{dt}](https://tex.z-dn.net/?f=R%3D%5Cfrac%7B1%7D%7B1%7D%5Cfrac%7Bd%5BP_4%5D%7D%7Bdt%7D)
![0.0228 M/s=\frac{1}{1}\frac{d[P_4]}{dt}](https://tex.z-dn.net/?f=0.0228%20M%2Fs%3D%5Cfrac%7B1%7D%7B1%7D%5Cfrac%7Bd%5BP_4%5D%7D%7Bdt%7D)
The rate at which
is being consumed :
![R=\frac{-1}{4}\frac{d[PH_3]}{dt}](https://tex.z-dn.net/?f=R%3D%5Cfrac%7B-1%7D%7B4%7D%5Cfrac%7Bd%5BPH_3%5D%7D%7Bdt%7D)
![0.0228 M/s\times 4=\frac{-1}{1}\frac{d[PH_3]}{dt}](https://tex.z-dn.net/?f=0.0228%20M%2Fs%5Ctimes%204%3D%5Cfrac%7B-1%7D%7B1%7D%5Cfrac%7Bd%5BPH_3%5D%7D%7Bdt%7D)
![\frac{-1}{1}\frac{d[PH_3]}{dt}=0.912 M/s](https://tex.z-dn.net/?f=%5Cfrac%7B-1%7D%7B1%7D%5Cfrac%7Bd%5BPH_3%5D%7D%7Bdt%7D%3D0.912%20M%2Fs)