<span>Ca(NO3)2 + Na2CO3 = CaCO3 + 2NaNO3
Yes a precipitate of Calcium Carbonate is formed since it is insoluble in water.
Mol Wt of Calcium Nitrate is 164. And that of Calcium Carbonate is 100.
One mole of Calcium Nitrate produces one mole of Calcium Carbonate.
i.e. 164 gms will produce 100gms of precipitate
So, 1.74gms of Calcium Carbonate will be obtained from 2.85gms Calcium Nitrate present in the original solution.</span>
The mixture flow rate in lbm/h = 117.65 lbm/h
<h3>Further explanation</h3>
Given
15.0 wt% methanol
The flow rate of the methyl acetate :100 lbm/h
Required
the mixture flow rate in lbm/h
Solution
mass of methanol(CH₃OH, Mw= 32 kg/kmol) in mixture :

mass of the methyl acetate(C₃H₆O₂,MW=74 kg/kmol,85% wt) in 200 kg :

Flow rate of the methyl acetate in the mixture is to be 100 lbm/h.
1 kg mixture = 0.85 .methyl acetate
So flow rate for mixture :

Answer:
About 170-180 grams of potassium nitrate are completely dissolved in 100 g.
Explanation:
Hello!
In this case, according to the reported solubility data for potassium nitrate at different temperatures on the attached picture, it is possible to bear out that about 170-180 grams of potassium nitrate are completely dissolved in 100 g; considering that the solubility is the maximum amount of a solute that can be dissolved in a solvent, in this case water.
Best regards!
Answer:
[HI] = 0.7126 M
Explanation:
Step 1: Data given
Kc = 54.3
Temperature = 703 K
Initial concentration of H2 and I2 = 0.453 M
Step 2: the balanced equation
H2 + I2 ⇆ 2HI
Step 3: The initial concentration
[H2] = 0.453 M
[I2] = 0.453 M
[HI] = 0 M
Step 4: The concentration at equilibrium
[H2] = 0.453 - X
[I2] = 0.453 - X
[HI] = 2X
Step 5: Calculate Kc
Kc = [Hi]² / [H2][I2]
54.3 = 4x² / (0.453 - X(0.453-X)
X = 0.3563
[H2] = 0.453 - 0.3563 = 0.0967 M
[I2] = 0.453 - 0.3563 = 0.0967 M
[HI] = 2X = 2*0.3563 = 0.7126 M