Answer:
8 Joule
Step-by-step explanation:
Mass of block = 2 kg
Displacement = x = 800 mm = 0.8 m
Spring constant = k = 25 N/m
Potential Energy of a spring
Work done = Difference in Potential Energy
Work Done = Δ P.E.

⇒P.E. = 0.5×25×0.8²
⇒P.E. = 8 Nm = 8 Joule
Here already the spring constant and displacement is given so the mass will not be used while calculating the potential energy.
Given that

, then

The slope of a tangent line in the polar coordinate is given by:

Thus, we have:

Part A:
For horizontal tangent lines, m = 0.
Thus, we have:

Therefore, the <span>values of θ on the polar curve r = θ, with 0 ≤ θ ≤ 2π, such that the tangent lines are horizontal are:
</span><span>θ = 0
</span>θ = <span>2.02875783811043
</span>
θ = <span>4.91318043943488
Part B:
For vertical tangent lines,

Thus, we have:

</span>Therefore, the <span>values of θ on the polar curve r = θ, with 0 ≤ θ ≤ 2π, such that the tangent lines are vertical are:
</span>θ = <span>4.91718592528713</span>
Answer:
B
Step-by-step explanation:
i hope it helps
#CarryOnLearning
Answer:

Step-by-step explanation:
For question #1:

For question #2:

The distributive property: a(b - c) = ab - ac
27 - 18r = 9·3 - 9·2r = 9(3 - 2r)