Answer is "0.05 mol".
<em>Explanation;</em>
We can do calculation by using a simple formula as
n = m/M
Where, n is the number of moles of the substance (mol), m is the mass of the substance (g) and M is the molar mass of the substance (g/mol).
Here,
n = ?
m = 2.80 g
M = 56.08 g/mol
By substitution,
n = 2.80 g /56.08 g/mol
n = 0.0499 mol ≈ 0.05 mol
Vibration?
I’m not super sure.
Answer:
c or d
Explanation:
i tried a and it was wrong. its not B. and i cant see the rest. its the one that looks like a catipillar tho
Answer:
Be^2+ ion
Explanation:
Be(OH)x^y- ions and Be(OH)2 solid
Answer:
Rate of hydrogen formation is 0.05 mole per second
Explanation:
Firstly, we write the equation of reaction.
When alkali earth metals react with dilute mineral acid, the reaction is vigorous with the production or evolution of hydrogen gas as a result of the displacement of the hydrogen from the acid by the metal. This is one of the basic reactions of mineral acids
Ca + H2SO4 ——> CaSO4 + H2
Looking at the reaction, 1 mole of calcium gave 1 mole of the hydrogen gas
What we do now is to calculate the number of moles of calcium produced by 20g of Ca
Mathematically;
number of moles = mass/atomic mass
number of moles of calcium is thus
20/40 = 0.5 moles
Now, if 1 mole of calcium produced 1 mole of the gas
Definitely, 0.5 mole of calcium will produce 0.5 mole of the gas
So the rate of gas formation would be 0.5/10 = 0.05 mole/second