Answer:
Al2(SO4)3
Explanation:
Looking at this carefully, we will discover that Al2(SO4)3 is composed of Al^3+ and SO4^2-.
The aluminum and sulphate ions are ionically bonded. However, the oxygen and sulphur in the sulphate ion are covalently bonded.
Hence, Al2(SO4)3 contains both ionic and covalent bond.
Answer:
She should suspect a Tornado.
Explanation:
Tornadoes form when warm humid air collides with cold dry air. The denser the cold air is pushed over warm air, causing an updraft. As soon as it reaches the ground a tornado is formed.
Answer:
74mL
Explanation:
Given parameters:
Molar mass of citric acid = 192g/mol
Molar mass of baking soda = 84g/mol
Concentration of citric acid = 0.8M
Mass of baking powder = 15g
Unknown parameters:
Volume of citric acid = ?
Solution
Equation of the reaction:
C₆H₈O₇ + 3NaHCO₃ → Na₃C₆H₅O₇ + 3H₂O + 3CO₂
Procedure:
- We work from the known parameters to the unknown. From the statement of the problem, we can approach the solution from the parameters of the baking powder.
- From the baking powder, we can establish a molar relationship between the two reactants. We employ the mole concept in this regard.
- We find the number of moles of the baking powder that went into the reaction using the expression below:
Number of moles = 
Number of moles =
= 0.179mole
- From the equation of the reaction, we can find the number of moles of the citric acid:
3 moles of baking powder reacted with 1 mole of citric acid
0.179 moles of baking powder would react with
:
This yields 0.059mole of citric acid
- To find the volume of the citric acid, we use the mole expression below:
Volume of citric acid = 
Volume of citric acid =
= 0.074L
Expressing in mL gives 74mL
I don't know how to draw it but I can solve it
Answer:
Vaporization and Condensation When a liquid vaporizes in a closed container, gas molecules cannot escape. As these gas phase molecules move randomly about, they will occasionally collide with the surface of the condensed phase, and in some cases, these collisions will result in the molecules re-entering the condensed phase.