1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bearhunter [10]
3 years ago
12

Solve for X!! Will mark brainliest

Mathematics
1 answer:
bekas [8.4K]3 years ago
4 0

Answer:

x=43   (being vertically opposite angles

Step-by-step explanation:

You might be interested in
Opposite of 8=?<br><br> Brainliest
stich3 [128]

Answer:

-8

Step-by-step explanation:

The opposite of 8 is -8.

6 0
3 years ago
How to solve this trig
n200080 [17]

Hi there!

To find the Trigonometric Equation, we have to isolate sin, cos, tan, etc. We are also given the interval [0,2π).

<u>F</u><u>i</u><u>r</u><u>s</u><u>t</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

What we have to do is to isolate cos first.

\displaystyle  \large{ cos \theta =  -  \frac{1}{2} }

Then find the reference angle. As we know cos(π/3) equals 1/2. Therefore π/3 is our reference angle.

Since we know that cos is negative in Q2 and Q3. We will be using π + (ref. angle) for Q3. and π - (ref. angle) for Q2.

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>2</u>

\displaystyle \large{ \pi -  \frac{ \pi}{3}  =  \frac{3 \pi}{3}  -  \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{2 \pi}{3} }

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi  +   \frac{ \pi}{3}  =  \frac{3 \pi}{3}   +   \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{4 \pi}{3} }</u>

Both values are apart of the interval. Hence,

\displaystyle \large \boxed{ \theta =  \frac{2 \pi}{3} , \frac{4 \pi}{3} }

<u>S</u><u>e</u><u>c</u><u>o</u><u>n</u><u>d</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

Isolate sin(4 theta).

\displaystyle \large{sin 4 \theta =  -  \frac{1}{ \sqrt{2} } }

Rationalize the denominator.

\displaystyle \large{sin4 \theta =  -  \frac{ \sqrt{2} }{2} }

The problem here is 4 beside theta. What we are going to do is to expand the interval.

\displaystyle \large{0 \leqslant  \theta < 2 \pi}

Multiply whole by 4.

\displaystyle \large{0 \times 4 \leqslant  \theta \times 4 < 2 \pi \times 4} \\  \displaystyle \large \boxed{0 \leqslant 4 \theta < 8 \pi}

Then find the reference angle.

We know that sin(π/4) = √2/2. Hence π/4 is our reference angle.

sin is negative in Q3 and Q4. We use π + (ref. angle) for Q3 and 2π - (ref. angle for Q4.)

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi +  \frac{ \pi}{4}  =  \frac{ 4 \pi}{4}  +  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{  \frac{5 \pi}{4} }</u>

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{2 \pi -  \frac{ \pi}{4}  =  \frac{8 \pi}{4}  -  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{ \frac{7 \pi}{4} }

Both values are in [0,2π). However, we exceed our interval to < 8π.

We will be using these following:-

\displaystyle \large{ \theta + 2 \pi k =  \theta \:  \:  \:  \:  \:  \sf{(k  \:  \: is \:  \: integer)}}

Hence:-

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>3</u>

\displaystyle \large{ \frac{5 \pi}{4}  + 2 \pi =  \frac{13 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 4\pi =  \frac{21 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 6\pi =  \frac{29 \pi}{4} }

We cannot use any further k-values (or k cannot be 4 or higher) because it'd be +8π and not in the interval.

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{ \frac{ 7 \pi}{4}  + 2 \pi =  \frac{15 \pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 4 \pi =  \frac{23\pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 6 \pi =  \frac{31 \pi}{4} }

Therefore:-

\displaystyle \large{4 \theta =  \frac{5 \pi}{4} , \frac{7 \pi}{4} , \frac{13\pi}{4} , \frac{21\pi}{4} , \frac{29\pi}{4}, \frac{15 \pi}{4} , \frac{23\pi}{4} , \frac{31\pi}{4}  }

Then we divide all these values by 4.

\displaystyle \large \boxed{\theta =  \frac{5 \pi}{16} , \frac{7 \pi}{16} , \frac{13\pi}{16} , \frac{21\pi}{16} , \frac{29\pi}{16}, \frac{15 \pi}{16} , \frac{23\pi}{16} , \frac{31\pi}{16}  }

Let me know if you have any questions!

3 0
3 years ago
How do I solve 1/10x+5=-3x-13+4x ?
Temka [501]

Answer:

x = 20

I am not sure if you wanted the answer. Sorry!

Step-by-step explanation:

Let's solve your equation step-by-step.

1/10 x + 5 = - 3x - 13 + 4x

Step 1: Simplify both sides of the equation.

1/10 x + 5 = - 3x - 13 + 4x

1/10 x + 5 = - 3x + - 13 + 4x

1/10 x + 5 = (<em>- 3x + 4x</em>) + (- 13)

1/10 x + 5 = <em>x</em> + - 13

1/10 x + 5 = x - 13

Step 2: Subtract x from both sides.

1/10 x + 5 - <em>x </em>= x - 13 - <em>x</em>

- 9/10 x + 5 = - 13

Step 3: Subtract 5 from both sides

- 9/10 x + 5 - <em>5</em> = - 13 - <em>5</em>

- 9/10 x = - 18

Step 4: Multiply both sides by 10/(- 9).

(<em>10/ - 9</em>) * (- 9/10 x) = (<em>01/ - 9</em>) * (- 18)

x = 20

Hope this helps!

4 0
3 years ago
Read 2 more answers
Can someone solve this??
Dima020 [189]

Answer:

  see below

Step-by-step explanation:

There are a few relevant relations involved:

  • an inscribed angle is half the measure of the arc it intercepts
  • an arc has the same measure as the central angle that intercepts it
  • the angle exterior to a circle where secants meet is half the difference of the intercepted arcs (near and far)
  • the angle interior to a circle where secants meet is half the sum of the intercepted arcs
  • the angle where tangents meet is the supplement of the (near) arc intercepted
  • an exterior angle of a triangle is equal to the sum of the remote interior angles
  • the angle between a tangent and a radius is 90°
  • the angle sum theorem

AB is a diameter, so arcs AB are 180°.

a) BC is the supplement to arc AC: 180° -140° = 40°

b) BG is the supplement to AG: 180° -64° -38° = 78°

c) ∠1 has the measure of BC: 40°

d) ∠2 is inscribed in a semicircle, so has measure 180°/2 = 90°

e) ∠3 is half the measure of arc AE: 64°/2 = 32°

f) ∠4 is half the sum of arcs AG and BC: ((64°+38°) +40°)/2 = 71°

g) ∠5 is half the difference of arcs AC and EG: (140° -38°)/2 = 51°

h) ∠6 is half the sum of arcs EAC and BG: ((140°+64°) +78°)/2 = 141°

i) ∠7 is the difference of exterior angle 4 and interior angle 1: 71° -40° = 31°

j) ∠8 is the measure of arc AC: 140°

k) ∠9 is the supplement to arc AC: 180° -140° = 40°

l) ∠10 is the complement of angle 7: 90° -31° = 59°

3 0
3 years ago
The critical points of a rational inequality are -1, 3, and 4. Which set of points can be tested to find a complete solution
mars1129 [50]

Answer:

It would be D. I got it correct on Edgenuity.

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • 11760825 in word form
    11·1 answer
  • Anyone know how to do this
    5·2 answers
  • the expression 9a + 6s is the cost for a adults and s students to see a musical performance, find the total cost for four adults
    6·2 answers
  • How can u <br> Simplify negative 9 over 6 divided by 3 over negative 2. .
    14·1 answer
  • Please help me with this explain!!!!!
    5·1 answer
  • Which number when rounded to the nearest whole number 4
    7·1 answer
  • 30-60-90 triangle..find the value of y ?
    8·1 answer
  • When dividing a polynomial by a​ binomial, what​ (if anything) should be done if there are any missing powers of the​ variable?
    7·1 answer
  • Bart uses 3/12 cup milk to make muffins. Write a fraction that is equivalent to 3/12 pls help out!
    6·2 answers
  • Please help if you know the answer please!
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!