Answer:
In the clarification portion elsewhere here, the definition of the concern is mentioned.
Explanation:
So like optical telescopes capture light waves, introduce it to concentrate, enhance it, as well as make it usable through different instruments via study, so radio telescopes accumulate weak signal light waves, introduce that one to focus, enhance it, as well as make this information available during research. To research naturally produced radio illumination from stars, galaxies, dark matter, as well as other natural phenomena, we utilize telescopes.
Optical telescopes detect space-borne visible light. There are some drawbacks of optical telescopes mostly on the surface:
- Mostly at night would they have been seen.
- Unless the weather gets cloudy, bad, or gloomy, they shouldn't be seen.
Although radio telescopes monitor space-coming radio waves. Those other telescopes, when they are already typically very massive as well as costly, have such an improvement surrounded by optical telescopes. They should be included in poor weather and, when they travel through the surrounding air, the radio waves aren't obscured by clouds. Throughout the afternoon and also some at night, radio telescopes are sometimes used.
64 miles/hour
Therefore 1/64 hours/mile
68 miles * 1/64 hours/mile (notice how miles cancels out)
Therefore the answer is 68/64 hours = 1.0625 hours = 1 hour 3min and 45sec.
Answer:
Twice
Step-by-Step Explanation:
Time between 7:00 PM and 1:00 AM: 6 hours
Distance: 4818km
Since the distance is 4818km, and the time is 6 hours, you divide 4818 by 6.
803.0000015999 km/h.
The average speed is 803 km/h
Which considering the ideal case scenario if the plane starts at 0 reaches the speed of 803 and the end reduces its speed from 803 to 0. This means we have come across the value of 800 at least twice. Hence, the plane was travelling at a speed of 800 km/h at least 2 times.
Answer:

Explanation:
The magnitude of the magnetic force is

To find the angle, we make
subject of the formula


