The answers are 3.3kWh, 1.2kWh, and 120kWh.
Multiply the amount of kW used per hour by the amount of time it was powered and you receive your answer.
Answer:
the mass is distributed uniformly in an atom
Answer:
The speed of the block when it has returned to the bottom of the ramp is 6.56 m/s.
Explanation:
Given;
mass of block, m = 4 kg
coefficient of kinetic friction, μk = 0.25
angle of inclination, θ = 30°
initial speed of the block, u = 5 m/s
From Newton's second law of motion;
F = ma
a = F/m
Net horizontal force;
∑F = mgsinθ + μkmgcosθ

At the top of the ramp, energy is conserved;
Kinetic energy = potential energy
¹/₂mv² = mgh
¹/₂ v² = gh
¹/₂ x 5² = 9.8h
12.5 = 9.8h
h = 12.5/9.8
h = 1.28 m
Height of the ramp is 1.28 m
Now, calculate the speed of the block (in m/s) when it has returned to the bottom of the ramp;
v² = u² + 2ah
v² = 5² + 2 x 7.022 x 1.28
v² = 25 + 17.976
v² = 42.976
v = √42.976
v = 6.56 m/s
Therefore, the speed of the block when it has returned to the bottom of the ramp is 6.56 m/s.
We actually cant, really. Black Holes are really very powerful and don't just happen in some random place in the cosmos. We have got shots of Black holes that you cannot even see, but all the other big black holes that look like something straight of a sci-fi movie that look real, are really just photo- shopped. good question. Hope This Helped.