Answer: C. ethanol
The enthalpy of combustion is the amount of heat produced when one mole of ethanol undergoes complete combustion at 25 ° C and 1 atmosphere pressure, yielding products also at 25 ° C and 1 atm.
<u>The enthalpy of combustion of the unknown compound is</u>
ΔH = - 320 kJ / 0.25 mol = - 1280 kJ / mol
<u>To choose a probable compound according to this combustion enthalpy, we must evaluate the deviation in relation to the values reported in the literature for the three probable compounds</u> (methane, ethylene and ethanol). The deviation (e%) will be calculated according to the following equation,
e% = ( | ΔHx - ΔH | / ΔHx ) x 100%
where ΔHx is the enthalpy of combustion of the probable compound.
The following table shows the combustion enthalpies of the probable compounds and their deviation in relation to the enthalpy of ΔH = - 1280 kJ / mol
Compound Enthalpy of combustion (kJ/mol) Deviation
Methane - 890.7 43.8%
Ehylene -1411.2 9.3%
Ethanol -1368.6 6.5%
According to the previous table, we can say that the most probable compound is ethanol, since it has the smallest deviation in relation to the experimental enthalpy value of combustion.
False, the internet branches throughout many countries connecting you to the rest of the world from home. Hope it helped!
Answer:
They are both planets made out of gas!
They both share methane, hydrogen and helium gases!
Answer:
2.82 L
T₁ = 303 K
T₂ = 263 K
The final volume is smaller.
Explanation:
Step 1: Given data
- Initial temperature (T₁): 30 °C
- Initial volume (V₁): 3.25 L
- Final temperature (T₂): -10 °C
Step 2: Convert the temperatures to Kelvin
We will use the following expression.
K = °C + 273.15
T₁: K = 30°C + 273.15 = 303 K
T₂: K = -10°C + 273.15 = 263 K
Step 3: Calculate the final volume of the balloon
Assuming constant pressure and ideal behavior, we can calculate the final volume using Charles' law. Since the temperature is smaller, the volume must be smaller as well.
V₁/T₁ = V₂/T₂
V₂ = V₁ × T₂/T₁
V₂ = 3.25 L × 263 K/303 K = 2.82 L
Answer:
The Coriolis effect is caused by the rotation of the earth around its own axis.
Explanation:
The Coriolis effect arises from the fact that different latitudes of the earth's surface rotate at different speeds. The path of wind on earth is deflected by the Coriolis effect. As things move over the earth, they meet different speed areas, which causes the Coriolis Effect to divert their route.
Thus, The Coriolis effect is caused by the rotation of the earth around its own axis.