A transverse wave is a wave where the particles in the medium move perpendicular (at right angles) to the direction of the source or its propagation (think of a snake slithering through grass) an example of a transverse wave could be a light wave. Light waves for instance don’t need a medium in order to propagate but transverse waves in general do need a medium.
The lens changes the focal distance of the eye so that you can focus on images/objects.
D. The atomic mass in amu is basically the number or nuclei since the mass of the electrons is negligible. For a given atom (element) the number of protons is fixed. Say the element has 10 protons. If the atomic weight is 14 atomic mass units (amu), you know that there are 4 neutrons, since both neutrons and protons are 1 amu each and there are 10 protons
A. Fnet=ma
6*2=12N of force acting on the object in the direction it is accelerating
B. Fnet=ma
4*2=8N of force action on the object in the direction it is accelerating
Answer:
a) and c).
Explanation:
For a complete destructive interference occur, it must be met the following condition relating the wavelength, and the difference in the paths taken by the sound emitted by the sources until arriving to the listening point:
d = |dA- dB| = (2n-1)*(λ/2)
For n= 1, d = λ/2 = 0.25 m, it doesn't meet any of the cases.
For n=2, d= 3*(λ/2) = 0.75 m
In the case a) we have dA = 2.15 m and dB = 3.00 m, so dB-dA = 0.75 m, which means that in the location stated by case a) a complete destructive interference would occur.
For n=3, d= 5*(λ/2) = 5*0.25 m = 1.25 m.
This is just the case c) because we have dA = 3.75 m and dB = 2.50 m, so dA-dB = 1.25 m, which means that in the location stated by case c) a complete destructive interference would occur also.
The remaining cases don't meet the condition stated above, so the statements found to be true are a) and c),