Answer:


Explanation:
We have an uniform circular motion, therefore, the pebble’s speed is given by the distance traveled in a revolution
and the period (T), since this is the time pebble’s takes to complete a revolution:

The period is inversely proportional to the frequency:

So, we have:

Recall that the radius is the half of the diameter and one revolution per is equal to one Hz:

The centripetal acceleration is defined as:

Scientists can show creativity by constantly coming up with new ideas and theories to test. There is always something new to think about and scientists can use their imagination in order to create something new and original that the world needs.
Answer:
A λ = 97.23 nm
, B) λ = 486.2 nm
, C) λ = 53326 nm
Explanation:
With that problem let's use the Bohr model equation for the hydrogen atom
= -k e² /2a₀ 1/n²
For a transition between two states we have
-
= -k e² /2a₀ (1/
² - 1 / n₀²)
Now this energy is given by the Planck equation
E = h f
And the speed of light is
c = λ f
Let's replace
h c / λ = - k e² /2a₀ (1 /
² - 1 / no₀²)
1 / λ = - k e² /2a₀ hc (1 /
² -1 / n₀²)
Where the constants are the Rydberg constant
= 1.097 10⁷ m⁻¹
1 / λ =
(1 / n₀² - 1 / nf²)
Now we can substitute the given values
Part A
Initial state n₀ = 1 to the final state
= 4
1 / λ = 1.097 10⁷ (1/1 - 1/4²)
1 / λ = 1.0284 10⁷ m⁻¹
λ = 9.723 10⁻⁸ m
We reduce to nm
λ = 9.723 10⁻⁸ m (10⁹ nm / 1m)
λ = 97.23 nm
Part B
Initial state n₀ = 2 final state
= 4
1 / λ = 1.097 10⁷ (1/2² - 1/4²)
1 / λ = 0.2056 10⁻⁷ m
λ = 486.2 nm
Part C
Initial state n₀ = 3
1 / λ = 1,097 10⁷ (1/3² - 1/4²)
1 / λ = 5.3326 10⁵ m⁻¹
λ = 5.3326 10-5 m
λ = 53326 nm
I think it’s by using a magnet because metals are magnetic