Hello there.
<span>Electromagnetic radiation is:
</span><span>A- energy that is electric and magnetic
</span>
The vehicle accelerates at 2.648 m/s².
We have:
Initial velocity, u = 50 miles per hour = 22.352 m/s
final velocity, v = 80 miles per hour = 35.762 m/s
Time, t = 5 seconds
The time in hours is:
t = 5 seconds
Now, the acceleration of the car can be calculated using the formula:
v = u + at
35.762 = 22.352 + a(5)
a(5) = 30
a = 2.682 m/s²
From the calculations above, the acceleration of the car is 2.682 m/s².
Ler more about acceleration here:
brainly.com/question/605631
#SPJ9
Kinetic energy as she hits the water is 3300 joule.
To find the answer, we need to know about the Newton's equation of motion.
<h3>What's the Newton's equation of motion to determine the final velocity?</h3>
- The final velocity is determined as
V²=U²+2aS
- V= final velocity, U= initial velocity, a= acceleration and S= distance
<h3>What's the final velocity of the driver falling from 3.10m with initial velocity of 6.10m/s?</h3>
- Here, a= 9.8m/s², U= 6.10m/s and S= 3.10m
- So, V²= 6.1²+2×9.8×3.10= 98
- V= √98= 10m/s
<h3>What's the kinetic energy of the driver when touches the water?</h3>
Kinetic energy= 1/2×mass×velocity²
= 1/2 × 66 × 10²
= 3300J
Thus, we can conclude that the kinetic energy of the driver is 3300 Joule.
Learn more about the kinetic energy here:
brainly.com/question/25959744
#SPJ4
Let's start by differentiating the terms distance and displacement. They both refer to the length of paths. Distance only accounts for the total length regardless of the path taken. Displacement measures the linear path from the starting point to the end point. So, it does not necessarily follow the actual path. However, for this problem, assuming that the path is just in one direction, displacement and distance would just be equal. The equation would be:
Distance = Displacement = v₀t + 0.5at² = 0(10 s) + 0.5(+1.2 m/s²)(10 s)²
Distance = Displacement = 60 meters
Answer:
The entropy change is 45.2 kJ/K.
Explanation:
mass of water at 100 C = 2 kg
Latent heat of vaporization, L = 2260 kJ/kg
Heat is
H = m L
H = 2 x 2260 = 4520 kJ
Entropy is given by
S = H/T = 4520/100 = 45.2 kJ/K