The width used for the car spaces are taken as a multiples of the width of
the compact car spaces.
Correct response:
- The store owners are incorrect
<h3 /><h3>Methods used to obtain the above response</h3>
Let <em>x</em><em> </em>represent the width of the cars parked compact, and let a·x represent the width of cars parked in full size spaces.
We have;
Initial space occupied = 10·x + 12·(a·x) = x·(10 + 12·a)
New space design = 16·x + 9×(a·x) = x·(16 + 9·a)
When the dimensions of the initial and new arrangement are equal, we have;
10 + 12·a = 16 + 9·a
12·a - 9·a = 16 - 10 = 6
3·a = 6
a = 6 ÷ 3 = 2
a = 2
Whereby the factor <em>a</em> < 2, such that the width of the full size space is less than twice the width of the compact spaces, by testing, we have;
10 + 12·a < 16 + 9·a
Which gives;
x·(10 + 12·a) < x·(16 + 9·a)
Therefore;
The initial total car park space is less than the space required for 16
compact spaces and 9 full size spaces, therefore; the store owners are
incorrect.
Learn more about writing expressions here:
brainly.com/question/551090
16 - 5(3t - 4) = 8(-2t + 11) <em>use distributive property</em>: <em>a(b + c) = ab + ac</em>
16 - (5)(3t) - (5)(-4) = (8)(-2t) + (8)(11)
16 - 15t + 20 = -16t + 88
36 - 15t = -16t + 88 <em>subtract 36 from both sides</em>
-15t = -16t + 52 <em>add 16t to both sides</em>
t = 52
The best prediction for the number of customers is 5450.
To find this value, you just need to plug in 20 for x into the expression. Then, evaluate it using the order of operations.
8(20)^2 + 100(20) + 250
8(400) + 100(20) + 250
3200 + 2000 + 250
5450
Answer:
<em><u>Given </u></em><em><u>-</u></em>
- <em><u>radius </u></em><em><u>of </u></em><em><u>cylinder </u></em><em><u>=</u></em><em><u> </u></em><em><u>6</u></em><em><u> </u></em><em><u>ft</u></em>
- <em><u>height </u></em><em><u>of </u></em><em><u>cylinder </u></em><em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>4</u></em><em><u> </u></em><em><u>ft</u></em>
Now ,

hope helpful~