Answer:
c)They can also be simultaneous in S if their separation is zero.
Explanation:
By relativity theory, we can say two events when seen from two different reference frames can only be simultaneous when they are at the same space location and occur simultaneously in at least one reference frame, therefore when Frame S′ usually passes Frame S. Two occurrences in S′ are simultaneous, therefore these occurrences can be simultaneous in S when their separation is 0 (that is they are at the same location)
And therefore option c. If their separation is zero, they can also be simultaneous in S.
To calculate the volume of a rectangular, we have to multiply the value of height, length and width.
8x5x4 = 160 cm ^3
Answer:
<h3>Because one Coulomb of charge is an abnormally large quantity of charge, the units of microCoulombs (µC) or nanoCoulombs (nC) are more commonly used as the unit of measurement of charge. To illustrate the magnitude of 1 Coulomb, an object would need an excess of 6.25 x 1018 electrons to have a total charge of -1 C.</h3>
Explanation:
<h3><em><u>mark as brainliast</u></em></h3><h3><em><u>indian </u></em><em><u>genius </u></em><em><u>s</u></em><em><u>a</u></em><em><u>r</u></em><em><u>thak</u></em></h3>
The planetary temperature energy balance is obtained by radiating back the absorbed radiation energy from outer-space, by the planet and thus acquiring thermal equilibrium.
What is the process of attaining thermal equilibrium by Earth?
The Stefan-Boltzmann law states that the more the temperature a planet has, the more it will radiate out to reach thermal equilibrium.
We know that outer space contains large masses of radiative energy freely distributed in its vast expanse. A small fraction of this energy is absorbed by the Earth through the atmosphere, surface land, clouds etc.
Now, radiative balance is achieved when a planet's surface continuously warms up until it reaches its peak at which point the same amount of absorbed energy can then be radiated back to space. The relative amount of energy radiated back by a planet is dependent upon the size of the planet.
A colder planet relatively absorbs lower amount of radiation energy from space. In some time, as the planet heats up enough, the energy is radiated back to the space attaining thermal equilibrium.
Learn more about Stefan-Boltzmann law here:
<u>brainly.com/question/14919749</u>
#SPJ4
Answer:
The velocity is 
Henrietta is at distance
from the under the window
Explanation:
From the question we are told that
The speed of Henrietta is 
The height of the window from the ground is 
Generally the time taken for the lunch to reach the ground assuming it fell directly under the window is

=>
=>
Generally the time taken for the lunch to reach Henrietta is mathematically represented as

Here
is the time duration that elapsed after Henrietta has passed below the window the value is given as 4 s
Now
=>
Generally the distance covered by Henrietta before catching her lunch is

=> 
=> 
Generally the speed with which Bruce threw her lunch is mathematically represented as

