Answer:

Explanation:
Hello there!
In this case, according to the given data, it is possible to infer that the gas mixture lies on the 15.0 cm-high column of water, so that the total pressure or atmospheric pressure is given by:

Thus, since the atmospheric pressure is 745 mmHg and the vapor pressure of water is 18 mmHg, the pressure of hydrogen turns out to be:

Best regards!
Answer:
the volume occupied by 3.0 g of the gas is 16.8 L.
Explanation:
Given;
initial reacting mass of the helium gas, m₁ = 4.0 g
volume occupied by the helium gas, V = 22.4 L
pressure of the gas, P = 1 .0 atm
temperature of the gas, T = 0⁰C = 273 K
atomic mass of helium gas, M = 4.0 g/mol
initial number of moles of the gas is calculated as follows;

The number of moles of the gas when the reacting mass is 3.0 g;
m₂ = 3.0 g

The volume of the gas at 0.75 mol is determined using ideal gas law;
PV = nRT

Therefore, the volume occupied by 3.0 g of the gas is 16.8 L.
Number of proton present in the nucleus determines the atomic number of an element. It determines <span>chemical properties, which is why all atoms with proton count (atomic number) 6 are carbon</span>
Answer:
Samira's model correctly demonstrates how the properties changed with the rearrangement of the atoms. However not all atoms are accounted for. There is a missing reactant.
Explanation:
Samira's model correctly demonstrated how the atoms in two compounds reacted to form two new products. However, the elements present in the reactants side should be the elements that make up the new products in the product side. But as the diagram shows, Sameera has mistakenly added a new element to one of her products which will be wrong.