This is an incomplete question, here is a complete question.
Calculate the solubility of each of the following compounds in moles per liter. Ignore any acid-base properties.
CaCO₃, Ksp = 8.7 × 10⁻⁹
Answer : The solubility of CaCO₃ is, 
Explanation :
As we know that CaCO₃ dissociates to give
ion and
ion.
The solubility equilibrium reaction will be:

The expression for solubility constant for this reaction will be,
![K_{sp}=[Ca^{2+}][CO_3^{2-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCa%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D)
Let solubility of CaCO₃ be, 's'




Therefore, the solubility of CaCO₃ is, 
Answer:
130 Liters
Explanation:
if 1 mol is 22.4 L, then 5.8 mol is 130 L (129.92 but use sig figs)
Answer:
In Cl
, the 2 is a subscript because it indicates there are 2 of the same elements. The Lewis structure would display it as Cl-Cl.
On the other hand, a superscript would indicate a specific charge.
All subscripts show the amount of the specific element there is.
An example would be O
or N
, they both show that there are 2 of the same elements.
If the subscript is outside a parenthesis such as
it indicates there are 2
molecules.
Answer:
d. inversely proportional to the volume of its container.
Explanation:
Boyle's law states that at constant temperature and number of moles, the pressure of the gas is inversely proportional to the volume of the gas.
Thus, P ∝ T
P is the pressure
T is the temperature
For two gases at same temperature, the law can be written as:-

<u>Thus, according to the question, the answer is:- d. inversely proportional to the volume of its container.</u>
Answer:
AFAIK
Explanation:
uric acid is much less toxic than ammonia, hence bigger concentrations of it are tolerated in the body. This means you can excrete it while excreting very little water - beneficial wherever water's not abundant.
There's a tradeoff though, uric acid requires more energy to synthesize than ammonia, so pretty much all fish, say, excrete ammonia rather than uric acid - it's no problem to dilute ammonia since there's no water shortage.