Answer:
(a) 47.08°
(b) 47.50°
Explanation:
Angle of incidence = 78.9°
<u>For blue light :
</u>
Using Snell's law as:
Where,
Θ₁ is the angle of incidence
Θ₂ is the angle of refraction
n₂ is the refractive index for blue light which is 1.340
n₁ is the refractive index of air which is 1
So,
Angle of refraction for blue light = sin⁻¹ 0.7323 = 47.08°.
<u>For red light :
</u>
Using Snell's law as:
Where,
Θ₁ is the angle of incidence
Θ₂ is the angle of refraction
n₂ is the refractive index for red light which is 1.331
n₁ is the refractive index of air which is 1
So,
Angle of refraction for red light = sin⁻¹ 0.7373 = 47.50°.
Answer:
A. They can transfer energy through a vacuum
C. They vibrate in two directions that are perpendicular to each other
D. They radiate outward in all directions
Explanation:
Answer:
the pressure fluctuation is LONGITUDINAL
Explanation:
Sound waves are an oscillating movement of air particles, this can be analyzed in two different, but equivalent ways, as an air oscillation and with a pressure wave due to these oscillations.
The expression for the wave is
ΔP = Δo sin (kx - wt)
Therefore, the pressure variation is in the same direction as the displacement variation, consequently the pressure fluctuation is LONGITUDINAL
Answer:
Part a)

Part b)

Explanation:
As we know that the observer is standing in front of one speaker
So here the path difference of the two sound waves reaching to the observer is given as


now phase difference is related with path difference as


here in order to find the wavelength


now we have

Part b)
Now we know that when phase difference is odd multiple of 
then in that case the the sound must be minimum
So nearest value for minimum intensity would be

so we have

so we have

now we have

