the answer is sex drive, I just took the test
Answer:
Explanation:
Let m be mass of each sphere and θ be angle, string makes with vertex in equilibrium.
Let T be tension in the hanging string
T cosθ = mg ( for balancing in vertical direction )
for balancing in horizontal direction
Tsinθ = F ( F is force of repulsion between two charges sphere)
Dividing the two equations
Tanθ = F / mg
tan17 = F / (7.1 x 10⁻³ x 9.8)
F = 21.27 x 10⁻³ N
if q be charge on each sphere , force of repulsion between the two
F = k q x q / r² ( r is distance between two sphere , r = 2 x .7 x sin17 = .41 m )
21.27 x 10⁻³ = (9 X 10⁹ x q²) / .41²
q² = .3973 x 10⁻¹²
q = .63 x 10⁻⁶ C
no of electrons required = q / charge on a single electron
= .63 x 10⁻⁶ / 1.6 x 10⁻¹⁹
= .39375 x 10¹³
3.9375 x 10¹² .
Answer:
time will elapse before it return to its staring point is 23.6 ns
Explanation:
given data
speed u = 2.45 ×
m/s
uniform electric field E = 1.18 ×
N/C
to find out
How much time will elapse before it returns to its starting point
solution
we find acceleration first by electrostatic force that is
F = Eq
here
F = ma by newton law
so
ma = Eq
here m is mass , a is acceleration and E is uniform electric field and q is charge of electron
so
put here all value
9.11 ×
kg ×a = 1.18 ×
× 1.602 ×
a = 20.75 ×
m/s²
so acceleration is 20.75 ×
m/s²
and
time required by electron before come rest is
use equation of motion
v = u + at
here v is zero and u is speed given and t is time so put all value
2.45 ×
= 0 + 20.75 ×
(t)
t = 11.80 ×
s
so time will elapse before it return to its staring point is
time = 2t
time = 2 ×11.80 ×
time is 23.6 ×
s
time will elapse before it return to its staring point is 23.6 ns
I'm quite certain the answer is "stress".
Answer:
a). Determine the magnitude of the gravitational force exerted on each by the earth.
Rock: 
Pebble: 
(b)Calculate the magnitude of the acceleration of each object when released.
Rock: 
Pebble: 
Explanation:
The universal law of gravitation is defined as:
(1)
Where G is the gravitational constant, m1 and m2 are the masses of the two objects and r is the distance between them.
<em>Case for the rock </em>
<em>:</em>
m1 will be equal to the mass of the Earth
and since the rock and the pebble are held near the surface of the Earth, then, r will be equal to the radius of the Earth
.

Newton's second law can be used to know the acceleration.

(2)

<em>Case for the pebble </em>
<em>:</em>

