Answer:
521 nm
Explanation:
Given the values and units we are given, I'm assuming 5.76*10^14 Hz is frequency.
The formula to use here is λ * υ = c, where λ is wavelength, υ is frequency, and c is the speed of light.
λ = ![\frac{3*10^8\frac{m}{s} }{5.76*10^{14}Hz} = {5.20833*10^{-7} m}\approx{521 *10^{-9}m}={521 nm}](https://tex.z-dn.net/?f=%5Cfrac%7B3%2A10%5E8%5Cfrac%7Bm%7D%7Bs%7D%20%7D%7B5.76%2A10%5E%7B14%7DHz%7D%20%3D%20%7B5.20833%2A10%5E%7B-7%7D%20m%7D%5Capprox%7B521%20%2A10%5E%7B-9%7Dm%7D%3D%7B521%20nm%7D)
Answer:
Step 7- Communicate. Present/share your results. Replicate.
Step 1- Question.
Step 2-Research.
Step 3-Hypothesis.
Step 4-Experiment.
Step 5-Observations.
Step 6-Results/Conclusion
Explanation:
Answer:
Stellar black holes form when the center of a very massive star collapses in upon itself.
Answer:
P = 1 (14,045 ± 0.03 ) k gm/s
Explanation:
In this exercise we are asked about the uncertainty of the momentum of the two carriages
Δ (Pₓ / Py) =?
Let's start by finding the momentum of each vehicle
car X
Pₓ = m vₓ
Pₓ = 2.34 2.5
Pₓ = 5.85 kg m
car Y
Py = 2,561 3.2
Py = 8,195 kgm
How do we calculate the absolute uncertainty at the two moments?
ΔPₓ = m Δv + v Δm
ΔPₓ = 2.34 0.01 + 2.561 0.01
ΔPₓ = 0.05 kg m
Δ
= m Δv + v Δm
ΔP_{y} = 2,561 0.01+ 3.2 0.001
ΔP_{y} = 0.03 kg m
now we have the uncertainty of each moment
P = Pₓ /
ΔP = ΔPₓ/P_{y} + Pₓ ΔP_{y} / P_{y}²
ΔP = 8,195 0.05 + 5.85 0.03 / 8,195²
ΔP = 0.006 + 0.0026
ΔP = 0.009 kg m
The result is
P = 14,045 ± 0.039 = (14,045 ± 0.03 ) k gm/s