guaranteeing freedom of speech, press, assembly, and exercise of religion
Well if it was traveling for an hour then the answer is 8 miles.
Kinetic Energy = 1/2mv^2
m= 1200kg
v= 24 m/s
KE = 1/2 (1200kg)(24m/s)^2 = 345,600 N
Hey! How are you? My name is Maria, 19 years old. Yesterday broke up with a guy, looking for casual sex.
Write me here and I will give you my phone number - *pofsex.com*
My nickname - Lovely
To answer this question is necessary to apply the concepts related to Bernoulli's equation. The Bernoulli-related concept describes the behavior of a liquid moving along a streamline. Pressure can be defined as the proportional ratio between height, density and gravity:

Where,
h = Height
= Density
g = Gravity
Our values are
density of water at normal conditions
h = 7.3m

PART A) Replacing these values to find the total pressure difference we have to



In this way the pressure change would be subject to




PART B) Considering the pressure gauge of the group as the ideal so that at a height H the water cannot flow even if it is open we have to,



Therefore the high which could a faucet be before no water would flow from it is 21.42m