1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
icang [17]
3 years ago
12

Powers of 10

Physics
1 answer:
Viktor [21]3 years ago
7 0

Answer:

es inglés plis españolejjdkdjdd

You might be interested in
What is one factor that helps keep the planets and other solar system objects in orbit around the sun?
pshichka [43]
The answer is D<span>.the gravitational force between the sun and each object in the solar system</span>
7 0
3 years ago
Read 2 more answers
Which of the following types of light microscopy improves the resolution of thick specimens by illuminating one plane of the spe
Vilka [71]

Answer:

confocal microscopy

Explanation:

According to my research on different types of microscopes, I can say that based on the information provided within the question the tool being mentioned in this situation is a confocal microscopy. This is an extremely powerful microscope used to develop extremely sharp images of cells and tissues by viewing one plane of the specimen at a given time.

I hope this answered your question. If you have any more questions feel free to ask away at Brainly.

7 0
3 years ago
Coulomb’s law and static point charge ensembles (15 points). A test charge of 2C is located at point (3, 3, 5) in Cartesian coor
fenix001 [56]

Answer:

a) F_{r}= -583.72MN i + 183.47MN j + 6.05GN k

b) E=3.04 \frac{GN}{C}

Step-by-step explanation.

In order to solve this problem, we mus start by plotting the given points and charges. That will help us visualize the problem better and determine the direction of the forces (see attached picture).

Once we drew the points, we can start calculating the forces:

r_{AP}^{2}=(3-0)^{2}+(3-0)^{2}+(5+0)^{2}

which yields:

r_{AP}^{2}= 43 m^{2}

(I will assume the positions are in meters)

Next, we can make use of the force formula:

F=k_{e}\frac{q_{1}q_{2}}{r^{2}}

so we substitute the values:

F_{AP}=(8.99x10^{9})\frac{(1C)(2C)}{43m^{2}}

which yields:

F_{AP}=418.14 MN

Now we can find its components:

F_{APx}=418.14 MN*\frac{3}{\sqrt{43}}i

F_{APx}=191.30 MNi

F_{APy}=418.14 MN*\frac{3}{\sqrt{43}}j

F_{APy}=191.30MN j

F_{APz}=418.14 MN*\frac{5}{\sqrt{43}}k

F_{APz}=318.83 MN k

And we can now write them together for the first force, so we get:

F_{AP}=(191.30i+191.30j+318.83k)MN

We continue with the next force. The procedure is the same so we get:

r_{BP}^{2}=(3-1)^{2}+(3-1)^{2}+(5+0)^{2}

which yields:

r_{BP}^{2}= 33 m^{2}

Next, we can make use of the force formula:

F_{BP}=(8.99x10^{9})\frac{(4C)(2C)}{33m^{2}}

which yields:

F_{BP}=2.18 GN

Now we can find its components:

F_{BPx}=2.18 GN*\frac{2}{\sqrt{33}}i

F_{BPx}=758.98 MNi

F_{BPy}=2.18 GN*\frac{2}{\sqrt{33}}j

F_{BPy}=758.98MN j

F_{BPz}=2.18 GN*\frac{5}{\sqrt{33}}k

F_{BPz}=1.897 GN k

And we can now write them together for the second, so we get:

F_{BP}=(758.98i + 758.98j + 1897k)MN

We continue with the next force. The procedure is the same so we get:

r_{CP}^{2}=(3-5)^{2}+(3-4)^{2}+(5-0)^{2}

which yields:

r_{CP}^{2}= 30 m^{2}

Next, we can make use of the force formula:

F_{CP}=(8.99x10^{9})\frac{(7C)(2C)}{30m^{2}}

which yields:

F_{CP}=4.20 GN

Now we can find its components:

F_{CPx}=4.20 GN*\frac{-2}{\sqrt{30}}i

F_{CPx}=-1.534 GNi

F_{CPy}=4.20 GN*\frac{2}{\sqrt{30}}j

F_{CPy}=-766.81 MN j

F_{CPz}=4.20 GN*\frac{5}{\sqrt{30}}k

F_{CPz}=3.83 GN k

And we can now write them together for the third force, so we get:

F_{CP}=(-1.534i - 0.76681j +3.83k)GN

So in order to find the resultant force, we need to add the forces together:

F_{r}=F_{AP}+F_{BP}+F_{CP}

so we get:

F_{r}=(191.30i+191.30j+318.83k)MN + (758.98i + 758.98j + 1897k)MN + (-1.534i - 0.76681j +3.83k)GN

So when adding the problem together we get that:

F_{r}=(-0.583.72i + 0.18347j +6.05k)GN

which is the answer to part a), now let's take a look at part b).

b)

Basically, we need to find the magnitude of the force and divide it into the test charge, so we get:

F_{r}=\sqrt{(-0.583.72)^{2} + (0.18347)^{2} +(6.05)^{2}}

which yields:

F_{r}=6.08 GN

and now we take the formula for the electric field which is:

E=\frac{F_{r}}{q}

so we go ahead and substitute:

E=\frac{6.08GN}{2C}

E=3.04\frac{GN}{C}

7 0
3 years ago
Calculate the linear acceleration (in m/s2) of a car, the 0.310 m radius tires of which have an angular acceleration of 15.0 rad
love history [14]

Answer:

a) The linear acceleration of the car is 4.65\,\frac{m}{s^{2}}, b) The tires did 7.46 revolutions in 2.50 seconds from rest.

Explanation:

a) A tire experiments a general plane motion, which is the sum of rotation and translation. The linear acceleration experimented by the car corresponds to the linear acceleration at the center of the tire with respect to the point of contact between tire and ground, whose magnitude is described by the following formula measured in meters per square second:

\| \vec a \| = \sqrt{a_{r}^{2} + a_{t}^{2}}

Where:

a_{r} - Magnitude of the radial acceleration, measured in meters per square second.

a_{t} - Magnitude of the tangent acceleration, measured in meters per square second.

Let suppose that tire is moving on a horizontal ground, since radius of curvature is too big, then radial acceleration tends to be zero. So that:

\| \vec a \| = a_{t}

\| \vec a \| = r \cdot \alpha

Where:

\alpha - Angular acceleration, measured in radians per square second.

r - Radius of rotation (Radius of a tire), measured in meters.

Given that \alpha = 15\,\frac{rad}{s^{2}} and r = 0.31\,m. The linear acceleration experimented by the car is:

\| \vec a \| = (0.31\,m)\cdot \left(15\,\frac{rad}{s^{2}} \right)

\| \vec a \| = 4.65\,\frac{m}{s^{2}}

The linear acceleration of the car is 4.65\,\frac{m}{s^{2}}.

b) Assuming that angular acceleration is constant, the following kinematic equation is used:

\theta = \theta_{o} + \omega_{o}\cdot t + \frac{1}{2}\cdot \alpha \cdot t^{2}

Where:

\theta - Final angular position, measured in radians.

\theta_{o} - Initial angular position, measured in radians.

\omega_{o} - Initial angular speed, measured in radians per second.

\alpha - Angular acceleration, measured in radians per square second.

t - Time, measured in seconds.

If \theta_{o} = 0\,rad, \omega_{o} = 0\,\frac{rad}{s}, \alpha = 15\,\frac{rad}{s^{2}}, the final angular position is:

\theta = 0\,rad + \left(0\,\frac{rad}{s}\right)\cdot (2.50\,s) + \frac{1}{2}\cdot \left(15\,\frac{rad}{s^{2}}\right)\cdot (2.50\,s)^{2}

\theta = 46.875\,rad

Let convert this outcome into revolutions: (1 revolution is equal to 2π radians)

\theta = 7.46\,rev

The tires did 7.46 revolutions in 2.50 seconds from rest.

3 0
3 years ago
I need help PLEASE HEEEEEEEEELPP
lana66690 [7]

Answer:

a = (v2 - v1) / t

From A to B    (8 - 4) m/s / 1 s = 4 m / s^2

From A to D    ( 7 - 4) m/s / 5 s = .6 m / s^2

Note these equations hold for "uniform" values

They say nothing about the acceleration at intermediate points - the equation just says that his average speed increased from 4 m/s to 7 m/s during a 5 sec period

6 0
2 years ago
Other questions:
  • Summarize what you read on the three websites you visited by identifying the advantages and disadvantages of using plastics.
    13·2 answers
  • PLZ HELP ME ASAP 30 POINTS
    6·1 answer
  • A police car is at rest parallel to the highway and measures the speed of cars. It sends the signal with a frequency of 1200 Hz,
    15·1 answer
  • li A 1500 kg weather rocket accelerates upward at IO mis 2. It explodes 2.0 s after liftoff and breaks into two fragments, one t
    8·1 answer
  • Which of the following is released by trees into the atmosphere?
    13·1 answer
  • A lamp has a current of 2.17 A. In hours, how long does it take for 1 mole of electrons to pass through the lamp?
    5·1 answer
  • What is seen as the creative force in the universe through which all things are connected?
    5·1 answer
  • Please help<br>Will give the brainliest!​
    9·1 answer
  • A 15kg object strikes the ground with 2000J of kinetic energy after freely falling from rest. How far above the ground was the o
    8·1 answer
  • The map above, shows the location of Brazil's major resources and industries. Where is most of Brazil's sugarcane grown?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!