1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mademuasel [1]
3 years ago
7

In the classic 1960s science-fiction comic book The Atom, a physicist discovers a basketball-sized meteorite (about 12 cm in rad

ius) that is actually a fragment of a white dwarf star. With some difficulty he manages to hand-carry the meteorite back to his laboratory.
Estimate the mass of such a fragment.
Physics
1 answer:
kirill [66]3 years ago
7 0
This app is broken but
You might be interested in
A large fake cookie sliding on a horizontal surface is attached to one end of a horizontal spring with spring constant k = 440 N
irinina [24]

Answer:

a) 0.275 m b) 13.6 J

Explanation:

In absence of friction, the energy is exchanged between the spring (potential energy) and the cookie (kinetic energy), so at any point, the sum of both energies must be the same:

E = ½ kx2 + ½ mv2

If we take as initial state, the instant when the cookie is passing through the spring’s equilibrium position, all the energy is kinetic, and we know that is equal to 20.0 J.

After sliding to the right, while is being acted on by a friction force, it came momentarily at rest. At this point, the initial kinetic energy, has become potential elastic energy, in part, and in thermal energy also, represented by the work done by the friction force.

So, for this state, we can say the following:

Ki = Uf + Eth = ½* k*d2 + Ff*d

20.0J = ½ *440 N/m* d2 + 11.0 *d, where d is the compressed length of the spring, which is equal to the distance travelled by the cookie before coming momentarily at rest.

We have a quadratic equation, that, after simplifying terms, can be solved as follows, applying the quadratic formula:

d = -0.05/2 +/- √0.090625 = -0.025 +/- 0.3 = 0.275 m (we take the positive root)

b) If we take as our new initial status the moment at which the spring is compressed, and the cookie is at rest, all the energy is potential:

E = Ui = 1/2 k d²

In this case, d is the same value that we got in a), i.e., 0.275 m (as the distance travelled by the cookie after going through the equilibrium point is the same length that the spring have been compressed).

E= 1/2 440 N/m . (0.275)m² = 16.6 J

When the cookie passes again through the equilibrium position, the energy will be in part kinetic, and in part, it will have become thermal energy again.

So, we can write the following equation:

Kf = Ui - Ff.d = 16.6 J - 11.0 (0.275) m = 16.6 J - 3.03 J = 13.6 J

3 0
3 years ago
What are the differences between refraction and diffraction?
Liula [17]
Refraction is the change in direction of a wave.
Diffraction is the bending of a wave around a barrier.
5 0
3 years ago
How are balanced & unbalanced forces related to net force?
Levart [38]

Answer:

An unbalanced force (net force) acting on an object changes its speed and/or direction of motion. ... A net force = unbalanced force. If however, the forces are balanced (in equilibrium) and there is no net force, the object will not accelerate and the velocity will remain constant.

Explanation:

4 0
3 years ago
A skater with a mass of 72 kg is traveling east at 5.8 m/s when he collides with another skater of mass 45 kg heading 60° south
Akimi4 [234]

The final velocity is 5.87 m/s

<u>Explanation:</u>

Given-

mass, m_{1} = 72 kg

speed, v_{1} = 5.8 m/s

Mass_{2},m_{2}  = 45 kg

speed_{2},v_{2}  = 12 m/s

Θ = 60°

Final velocity, v = ?

Applying the conservation of momentum:

m_{1} X v_{1} + m_{2} X v_{2} = (m_{1} +m_{2} ) v

72 X 5.8 + 45 X 12 X cos 60° = (72 + 45) v

v = 417.6 + 540 X \frac{0.5}{117}

v = 417.6 + \frac{270}{117}

v = 5.87 m/s

The final velocity is 5.87 m/s

8 0
3 years ago
If a 0.15 kg ball falls and has a KE of 20 J just before striking the ground, from what height did it fall. A. 1.36m B. 3m C. 13
RUDIKE [14]
According to the conservation of mechanical energy, the kinetic energy just before the ball strikes the ground is equal to the potential energy just before it fell. 

Therefore, we can say KE = PE
We know that PE = m·g·h

Which means KE = m·g·h

We can solve for h:

h = KE / m·g
   = 20 / (0.15 · 9.8) 
   = 13.6m

The correct answer is: the ball has fallen from a height of 13.6m.

5 0
3 years ago
Other questions:
  • One airplane is approaching an airport from the north at 181 kn/hr. A second airplane approaches from the east at 278 km/hr. Fin
    6·1 answer
  • Which list accurately identifies the hierarchy of space from largest to smallest? Solar system, galaxy, planet, universe Galaxy,
    5·2 answers
  • POINTS + BRAINLIEST TO CORRECT ANSWER
    8·1 answer
  • When happens when an object becomes positively charged?
    8·2 answers
  • 9. If you leave a paperclip stuck to a magnet long enough, the paperclip can become magnetic. Explain how this happens. Include
    9·1 answer
  • Ball is rolling for 12 seconds and a distance of 6 meters what is its speed
    5·2 answers
  • A 12.0N force with a fixed orientation does work on a
    12·1 answer
  • Which best illustrates projectile motion
    12·2 answers
  • Si se arroja una ròca en sentido horizontal desde un barranco de 100 m de altura. Choca
    8·1 answer
  • What is the connection between the x- and y-motions of a projectile?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!