Answer:
15.32°
Explanation:
We have given the wavelength 
Diffraction grating is 1460 lines per cm
So
(as 1 m=100 cm )
For maximum diffraction
here m is order of diffraction
So 


Answer:
a=2 ok do it and ........
Answer:
P.E = 0.068 J = 68 mJ
Explanation:
First we need to find the height attained by the ball toy. For this purpose, we will be using 3rd equation of motion:
2gh = Vf² - Vi²
where,
g = -9.8 m/s² (negative sign due to upward motion)
h = height attained by the ball toy = ?
Vf = Final Velocity = 0 m/s (since it momentarily stops at the highest point)
Vi = Initial Velocity = 3 m/s
Therefore,
2(-9.8 m/s²)h = (0 m/s)² - (3 m/s)²
h = (9 m²/s²)/(19.6 m/s²)
h = 0.46 m
Now, the gravitational potential energy of ball at its peak is given by the following formula:
P.E = mgh
P.E = (0.015 kg)(9.8 m/s²)(0.46 m)
<u>P.E = 0.068 J = 68 mJ</u>
A. Diagram A
B. Diagram C & D
C. Diagram B
D. Diagram C & D
E. Diagram B
F. Diagram C & D
These are simplified representations of an object's body and the force vectors acting on it. Some of the main forces that are involve are normal force, friction, push or pull and gravity.