It results change only in it's kinetic energy, it's KE will increase in accord with the work-energy theorem
A concave mirror is an example of curved mirrors. So that the appropriate answer to the given question is option D. The rays will cross at the focal point.
A concave mirror is a type of mirror in which its inner part is the reflecting surface, while its outer part is the back of the mirror. This mirror reflects all parallel rays close to the principal axis to a point of convergence. It can also be referred to as the converging mirror.
In this type of mirror, all rays of light parallel to the principal axis of the mirror after reflection will cross at the focal point.
Therefore, the required answer to the given question is option D. i.e The rays will cross at the focal point.
For reference: brainly.com/question/20380620
Answer:
The value of the spring constant of this spring is 1000 N/m
Explanation:
Given;
equilibrium length of the spring, L = 10.0 cm
new length of the spring, L₀ = 14 cm
applied force on the spring, F = 40 N
extension of the spring due to applied force, e = L₀ - L = 14 cm - 10 cm = 4 cm
From Hook's law
Force applied to a spring is directly proportional to the extension produced, provided the elastic limit is not exceeded.
F ∝ e
F = ke
where;
k is the spring constant
k = F / e
k = 40 / 0.04
k = 1000 N/m
Therefore, the value of the spring constant of this spring is 1000 N/m
Answer:
Number of revolutions=1.532 revolutions
Explanation:
Given data
Distance s=8.0 m
Angular speed a=1.2 rev/s
To find
Number of revolutions
Solution
From the equation of simple motion we not that

So for the number of revolutions she makes is given as

Explanation:
Formula to represent thrust is as follows.
F = 
= 
or, p = 

F = 
= 
= 201.67 N
Thus, we can conclude that the thrust is 201.67 N.