Answer:
statement 1 with answer C
statement 2 with answer F
statement 3 with answer B
Statement 1 with E
Statement 2 with A
Statement 3 with D
Explanation:
In this exercise you are asked to relate each with the answers
In general, in the optics diagram,
* Ray 1 is a horizontal ray that after stopping by the optical system goes to the focal point
* Ray 2 is a ray that passes through the intercept point between the optical axis and the system and does not deviate
* Ray 3 is a ray that passes through the focal length and after passing the optical system, it comes out horizontally.
With these statements, let's review the answers
statement 1 with answer C
statement 2 with answer F
statement 3 with answer B
Statement 1 with E
Statement 2 with A
Statement 3 with D
Answer:
<h2>a) 496N</h2><h2>b) 50.56kg</h2><h2>c) 1.90m/s²</h2>
Explanation:
According to newton's secomd law, ∑F = ma
∑F is the summation of the force acting on the body
m is the mass of the body
a is the acceleration
Given the normal force when the elevator starts N1 = 592N
Normal force after the elevator stopped N2 = 400N
When the elevator starts, its moves upward, the sum of force ∑F = Normal (N)force on the elevator - weight of the person( Fg)
When moving up;
N1 - Fg = ma
N1 = ma + Fg ...(1)
Stopping motion of the elevator occurs after the elevator has accelerates down. The sum of forces in this case will give;
N2 - Fg = -ma
N2 = -ma+Fg ...(2)
Adding equation 1 and 2 we will have;
N1+N2 = 2Fg
592N + 400N = 2Fg
992N 2Fg
Fg = 992/2
Fg = 496N
The weight of the person is 496N
<em>\b) To get the person mass, we will use the relationship Fg = mg</em>
g = 9.81m/s
496 = 9.81m
mass m = 496/9.81
mass = 50.56kg
c) To get the magnitude of acceleration of the elevator, we will subtract equation 1 from 2 to have;
N1-N2 = 2ma
592-400 = 2(50.56)a
192 = 101.12a
a = 192/101.12
a = 1.90m/s²
Answer:
1.78 m upward
Explanation:
We can find the displacement of the volleyball by using the SUVAT equation:

where, assuming upward as positive direction:
u = 6.0 m/s is the initial velocity
v = 1.1 m/s is the final velocity
a = g = -9.8 m/s^2 is the acceleration of gravity
d is the displacement
Solving the equation for d, we find:

And since it is positive, the displacement is upward.
To answer this item, we assume that the gas being referred to here is an ideal gas such that it follows the Gay-Lussac's law wherein,
P = kT
The equation shows the direct relationship between the pressure and the temperature. Thus, if heat is added which would consequently raise the substance's temperature, will also increase the pressure.
Answer:
400watts
Explanation:
Power is defined as the amount of energy expended in a specific time. It is also defined as the change in work done with respect to time.
Mathematically,
Power = Workdone/time
Work done = Force×distance
Power = Force × Distance/Time
Given force = mass× acceleration due to gravity
Force = 60×10 = 600N
Distance covered = 4.0m
Time taken = 6.0seconds
Power expended = 600×4/6
Power expended = 400Watts
The average mechanical power (in W) required to do this is 400Watts