Answer:
900 cm/s or 9 m/s.
Explanation:
Data obtained from the question include the following:
Length (L) = 30 cm
frequency (f) = 60 Hz
Velocity (v) =.?
Next, we shall determine the wavelength (λ).
This is illustrated below:
Since the wave have 4 node, the wavelength of the wave will be:
λ = 2L/4
Length (L) = 30 cm
wavelength (λ) =.?
λ = 2L/4
λ = 2×30/4
λ = 60/4
λ = 15 cm
Therefore, the wavelength (λ) is 15 cm
Now, we can obtain the speed of the wave as follow:
wavelength (λ) = 15 cm
frequency (f) = 60 Hz
Velocity (v) =.?
v = λf
v = 15 × 60
v = 900 cm/s
Thus, converting 900 cm/s to m/s
We have:
100 cm/s = 1 m/s
900 cm/s = 900/100 = 9 m/s
Therefore, the speed of the wave is 900 cm/s or 9 m/s.
Answer:
7056 kJ
Explanation:
Given that,
Mass of a ship roller coaster is 36,000 kg.
It reaches a height of 20 m off the ground
We need to find the gravitational potential energy does it have. The formula for the gravitational potential energy ios given by :
E = mgh
g is acceleration due to gravity
E = 36,000 kg × 9.8 m/s² × 20 m
= 7056000 J
or
E = 7056 kJ
So, it will have 7056 kJ of gravitational potential energy.
A. Energy is transmitted by all waves.
Answer:

Explanation:
When heat energy is supplied to an object, the temperature of the object increases according to the equation:

where
Q is the heat supplied
C is the heat capacity of the object
is the change in temperature
In this problem we have:
is the energy supplied
is the change in temperature of the object
Therefore, the heat capacity of the object is:
