Answer:
The initial speed of the block is 1.09 m/s
Explanation:
Given;
mass of block, m = 1.7 kg
force constant of the spring, k = 955 N/m
compression of the spring, x = 4.6 cm = 0.046 m
From principle of conservation of energy
kinetic energy of the block = elastic potential energy of the spring
¹/₂mv² = ¹/₂kx²
mv² = kx²

where;
v is the initial speed of the block
x is the compression of the spring

Therefore, the initial speed of the block is 1.09 m/s
Answer:
The ratio of kinetic energies of 5 kg object to 20 kg object is 1:1.
Explanation:
Kinetic energy is defined as energy possessed by an object due to its motion.It is calculated by:

Kinetic energy of the 5 kg object.
Mass of object,m = 5 kg
Velocity of an object = v

Kinetic energy of the 20 kg object.
Mass of object,m' = 20 kg
Velocity of an object = v'

The ratio of the kinetic energy of the 5 kilogram object to the kinetic energy of the 20-kilogram object:

Given that, v = 2v'

The ratio of kinetic energies of 5 kg object to 20 kg object is 1:1.
I am sorry I cant find the answer. I was hoping to find the answer
To find out scientific notation, you want to make sure that number is less than 10. So do 5.000000, you don't rally need the zeros but I just want to make my point. So use 10^x meaning ten the whatever power adds zeros like 5.000000x10^6 meaning it is increasing it by six zeros moving it out of the decimals and letting become 5,000,000.
Answer:
C. 110 m/s2
Explanation:
Force = Mass x Acceleration
Since we have the force and the mass, we can rearrange this equation to solve for acceleration by dividing both sides by mass:
Force/Mass = (Mass x Acceleration)/Mass
Acceleration = Force/Mass
Now we just have to plug in our values and calculate!
Acceleration = 48.4/0.44
Acceleration = 110m/s/s
It is option C. 110 m/s2
Hope this helped!