Answer:
It bonds with the added H+ or OH in solution.
Explanation:
4.648 gm of solute is needed to make 37.5 mL of 0.750 M KI solution.
Solution:
We will start with the Molarity

Also we know 1000 ml = 1 L
Therefore 37.5 ml by 1000ml we obtained 0.0375L
Equation for solving mole of solute

Now, multiply 0.750M by 0.0375
Substitute the known values in the above equation we get

Also we know that Molar mass of KI is 166 g/mol
So divide the molar mass value to get the no of grams.

So 4.648 gm of Solute is required for make 37.5 mL of 0.750 M KI solution.
A foreign DNA molecule can be incorporated into a bacterial plasmid during a transformation reaction.
<h3>How to explain the reaction?</h3>
With the aid of two enzymes, ligase and restriction enzymes, a foreign DNA molecule can be incorporated into a bacterial plasmid during a transformation reaction. Each enzyme detects a target DNA sequence and cuts it nearby, while ligase aids in connecting the DNA. When two bits of DNA have complimentary bases, it facilitates their joining.
Plasmid and the insert fragment are both present in the microfuge tube, and they both have compatible sticky ends. However, the ligase has been denatured and is no longer active because the prior student left it outside rather than freezing it; despite this, we had already put the ligase into the tube. Ligase aids in binding the plasmid and insert fragments together, but because it is denatured in this instance, it will no longer be able to do so. As a result, no transformation process will take place. And since ligase links DNA fragments together by catalyzing the development of connections between the nearby nucleotides, the two fragments will not be able to unite.
Learn more about reactions on:
brainly.com/question/11231920
#SPJ1
Answer:
We normally separate unreacted hydrogen from ammonia (product) in Haber process. The reaction mixture contains some ammonia, plus a lot of unreacted hydrogen and nitrogen. The mixture is cooled and compressed, causing the ammonia gas to condense into a liquid.