Q14: Our sun
Q15: The strong magnetic reaction in our atmosphere
Answer:
[A]²
Explanation:
Since the formation is independent of D, D is 0 order.
Since a quadruples when it is doubled it can be written as
2A^X= 4
To find the unknown power we can assume A= 1 to make the math simple. So When a = 2 (Because you doubled it) raised to X power it will equal 4
so the unknown power is 2
Making the rate law
[a]²[b]⁰
or simply just
[A]²
Answer:
In the n = 3 energy level
Explanation:
There's is no further explanation for this.
All the electrons in an energy level are distribuited according to the period in the periodic table they are.
So, if we have an atom in period 1, like Hydrogen (H), that atom would only have 1 level energy (n = 1) and in that level, we only have the sub level 1s.
Electrons in the 3d sublevel, are found mostly in all the transition metals of period 3, and it can go from 1 to 10 electrons. To be with the 3d sub level it's neccesary that the energy level to be 3.
energy levels beyond that, like n = 4, we have electrons occupying the 3d sub level, so, primordly, the 3d is found only in energy level 3.
Hope this helps
Answer:
Polar covalent bond.
Explanation:
When the bond is formed between the atoms by sharing the electrons the bond thus have covalent character. The atom with larger electronegativity attract the electron pair more towards it self and becomes partial negative while the other atom becomes partial positive. When the electronegativity difference is less than 0.4 the bond is non polar covalent.
When bonded atoms have greater electronegativity difference i.e 2 or greater than two the bond is ionic because electron is transfer from low electronegative atom to highest electronegative atom.
For example:
In water the electronegativity of oxygen is 3.44 and hydrogen is 2.2. That's why electron pair attracted more towards oxygen, thus oxygen becomes partial negative and hydrogen becomes partial positive.
In case of H₂, Cl₂, Br₂ the bond has very high covalent character because of zero electronegativity difference.
The volume of 0.20 moles of helium at STP is 4.5 liters.
Explanation:
Given:
Number of moles = 0.20 moles
To Find:
The volume of Helium at STP =?
Solution:
According to ideal gas law
PV = nRT
where
P is pressure,
V is volume,
n is the number of moles
R is the gas constant, and
T is temperature in Kelvin.
The question already gives us the values for p and T
,because helium is at STP. This means that temperature is 273.15 K and pressure is 1 atm
.
We also already know the gas constant. In our case, we'll use the value of
0.08206 L atm/K mol since these units fit the units of our given values the best
On substituting these values we get



V = 4.5 Liters