Answer:
The probability that a performance evaluation will include at least one plant outside the United States is 0.836.
Step-by-step explanation:
Total plants = 11
Domestic plants = 7
Outside the US plants = 4
Suppose X is the number of plants outside the US which are selected for the performance evaluation. We need to compute the probability that at least 1 out of the 4 plants selected are outside the United States i.e. P(X≥1). To compute this, we will use the binomial distribution formula:
P(X=x) = ⁿCₓ pˣ qⁿ⁻ˣ
where n = total no. of trials
x = no. of successful trials
p = probability of success
q = probability of failure
Here we have n=4, p=4/11 and q=7/11
P(X≥1) = 1 - P(X<1)
= 1 - P(X=0)
= 1 - ⁴C₀ * (4/11)⁰ * (7/11)⁴⁻⁰
= 1 - 0.16399
P(X≥1) = 0.836
The probability that a performance evaluation will include at least one plant outside the United States is 0.836.
Answer:
17
Step-by-step explanation:
You have to plug -2 into every x in the function, so:
(-2)^2 - 3 (-2) + 7
4 + 6 + 7
17
Answer:
-5 ≤ x≤ 3
Step-by-step explanation:
The domain is the values for x
x starts and -5 and includes -5 since the circle is closed
and goes to 3 and includes 3 since the circle is closed
-5 ≤ x≤ 3
Answer: -57
Step-by-step explanation:
15 + ( - 72)
Distribute
15 - 72
When this happens, you subtract the smaller number by the bigger one, then put the sign that was on the bigger number on what you get.
72 - 15 = 57
Put a negative sign on 57
-57
15 + (-72) = -57