Answer:
Subtract the result of three times five with 1.
Step-by-step explanation:



Subtract the result of three times five with 1.
Answer:
the probability that five randomly selected students will have a mean score that is greater than the mean achieved by the students = 0.0096
Step-by-step explanation:
From the five randomly selected students ; 160, 175, 163, 149, 153
mean average of the students = 160+175+163+149+153/5
= mean = x-bar = 800/5
mean x-bar = 160
from probability distribution, P(x-bar > 160) = P[ x-bar - miu / SD > 160 -150.8 /3.94]
P( Z>2.34) = from normal Z-distribution table
= 0.0096419
= 0.0096
hence the probability that five randomly selected students will have a mean score that is greater than the mean achieved by the students = 0.0096
where SD = standard deviation = 3.94 and Miu = 150.8
What’s da problem that u have?
Xy=12
xdy/dx + y = 12
xdy/dx = 12 - y
dy/dx= (12-y) /x
dy/dx | x=-4 ,y=-3 = (12-(-3))/(-4)
= (12+3)/-4 = -15/4