Answer:
The statement that best describes the trend in first ionization enery of elements on the periodic table is:
It generally decreases down a group because valence electrons are farther from the nucleus.
The first ionization energy measures how difficult is to release an electron from the outermost shell. The higher the ionization energy the more difficult it is to release an electron, the lower the ionication energy the easier to release an electron.
As the atomic number of the atom increases (which is what happens when you go down a group) the furthest the outermost shell of electrons will be (the size of the atoms increases) and so those electrons require less energy to be released, which means that the ionization energy decreases.
Hope it helps!
Answer:
Explanation:\
Elastic energy is energy stored in an object when there is a temporary strain on it – like in a coiled spring or a stretched elastic band.
The energy is stored in the bonds between atoms. The bonds absorb energy as they are put under stress and release the energy as they relax (when the object returns to its original shape).
Answer:
NH3 +H2O = NH4OH
Explanation:
no.of N atoms,O atoms and H atoms are now equal on both sides of the arrow.
Answer:
See explanation
Explanation:
The equation of the reaction is;
C3H8 + 5O2 ----> 3CO2 + 4H2O
Number of moles of C3H8 = 132.33g/44g/mol = 3 moles
1 mole of C3H8 yields 3 moles of CO2
3 moles of C3H8 yields 3 × 3/1 = 9 moles of CO2
Number of moles of oxygen = 384.00 g/32 g/mol = 12 moles
5 moles of oxygen yields 3 moles of CO2
12 moles of oxygen yields 12 × 3/5 = 7.2 moles of CO2
Hence C3H8 is the limiting reactant.
Mass of CO2 produced = 9 moles of CO2 × 44 g/mol = 396 g of CO2
1 moles of C3H8 yields 4 moles of water
3 moles of C3H8 yields 3 × 4/1 = 12 moles of water
Mass of water = 12 moles of water × 18 g/mol = 216 g of water
b) Actual yield = 269.34 g
Theoretical yield = 396 g
% yield = actual yield/theoretical yield × 100/1
% yield = 269.34 g /396 g × 100
% yield = 68%
Answer:
C. 10
Explanation:
So wr for protons is 2 and wr for alpha particles is 20. In these terms, alpha particles cause ten times more damage then protons.