Answer:
v = √2G
/ R
Explanation:
For this problem we use energy conservation, the energy initiated is potential and kinetic and the final energy is only potential (infinite r)
Eo = K + U = ½ m1 v² - G m1 m2 / r1
Ef = - G m1 m2 / r2
When the body is at a distance R> Re, for the furthest point (r2) let's call it Rinf
Eo = Ef
½ m1v² - G m1
/ R = - G m1
/ R
v² = 2G
(1 / R - 1 / Rinf)
If we do Rinf = infinity 1 / Rinf = 0
v = √2G
/ R
Ef = = - G m1 m2 / R
The mechanical energy is conserved
Em = -G m1
/ R
Em = - G m1
/ R
R = int ⇒ Em = 0
In a block and tackle, some friction in the pulleys will reduce the mechanical advantage of the machine. To include friction in a calculation of the mechanical advantage of a block and tackle, divide the weight of the object being lifted by the weight necessary to lift it.
Hope this helps
Answer: d. I or II
Explanation: A traveling wave has speed that depends on characteristics of a medium. Characteristics like linear density (μ), which is defined as mass per length.
Tension or Force (
) is also related to the speed of a moving wave.
The relationship between tension and linear density and speed is ginve by the formula:

So, for the traveling waves generated on a string fixed at both ends described above, ways to increase wave speed would be:
1) Increase Tension and maintaining mass and length constant;
2) Longer string will decrease linear density, which will increase wave speed, due to their inversely proportional relationship;
Then, ways to increase the wave speed is
I. Using the same string but increasing tension
II. Using a longer string with the same μ and T.
A. 90km/h = 25 m/s
W=1/2mv^2
=1/2* 650* 25^2
= 203125(J)
b. v’= 90-50= 40km/h
= 100/9 m/s
W=1/2mv^2
=1/2*650*(100/9)^2
= 40123,45679
weight = mg acts
downwards <span>
normal force = N acts upwards.
and force F acts at an angle θ below the horizontal.
(Let us assume that the woman pushes from the left, so F is
acted towards the right, which is below the horizontal)
so that, Frictional force, f=us*N acts towards the left
Now we balance the forces along x and y directions:
y direction: N = mg + F sinΘ
x direction: us * N = F cosΘ
We let the value of µs be equal to a value such that any F
will not be able to move the crate. Then, if we increase F by an amount F',
then the force pushing the crate towards the right also increases by F' cosΘ. Additionally,
the frictional force f must raise by exactly this amount.
Since f can’t exceed us*N, so the normal force must increase
by F' cosΘ/us.
Also, from the y direction equation, the normal force exceeds
by F' sin Θ.
<span>These two values must be the same, therefore:
<span>us = cot θ</span></span></span>