You knew that this question is ridiculously easy. So, just to
make it harder, you decided not to let us see the picture, so
that we could not "examine the circuit".
The description is talking about a parallel circuit. The other
kind is a series circuit, and that one has no forks in the road.
The ecological footprint finds the person demand on natural demand.
<h3>What is ecological footprint?</h3>
The ecological footprint is the method promoted by the Global Footprint Network to find human demand on natural capital. The quantity of nature it takes to support people or an economy. It tracks this demand through an ecological accounting system.
Some things which could do to reduce your footprint is Reduce Your Use of Single-Use, Disposable Plastics, Switch to Renewable Energy, Eat Less Meat, Reduce your Waste, Recycle Responsibly, Drive Less, Reduce Your Water Use, Support Local.
Thus, the ecological footprint is to find person demand on natural demand.
Learn more about ecological footprint.
brainly.com/question/14441911
#SPJ1
Wow ! This will take more than one step, and we'll need to be careful
not to trip over our shoe laces while we're stepping through the problem.
The centripetal acceleration of any object moving in a circle is
(speed-squared) / (radius of the circle) .
Notice that we won't need to use the mass of the train.
We know the radius of the track. We don't know the trains speed yet,
but we do have enough information to figure it out. That's what we
need to do first.
Speed = (distance traveled) / (time to travel the distance).
Distance = 10 laps of the track. Well how far is that ? ? ?
1 lap = circumference of the track = (2π) x (radius) = 2.4π meters
10 laps = 24π meters.
Time = 1 minute 20 seconds = 80 seconds
The trains speed is (distance) / (time)
= (24π meters) / (80 seconds)
= 0.3 π meters/second .
NOW ... finally, we're ready to find the centripetal acceleration.
<span> (speed)² / (radius)
= (0.3π m/s)² / (1.2 meters)
= (0.09π m²/s²) / (1.2 meters)
= (0.09π / 1.2) m/s²
= 0.236 m/s² . (rounded)
If there's another part of the problem that wants you to find
the centripetal FORCE ...
Well, Force = (mass) · (acceleration) .
We know the mass, and we ( I ) just figured out the acceleration,
so you'll have no trouble calculating the centripetal force. </span>
I'm not quite sure what happens to Fay so I didn't finish but hope it helps
Answer:
C
Explanation:
A white shirt really reflects light