Explanation:
As the given spheres are connected by a thin wire so, the potential on the spheres are the same.
......... (1)
Hence, total charge will be as follows.
= Q = -95.5 nC .......... (2)
Using the above two equations, the final equation will be as follows.

and, 
Hence, we will calculate the charge on sphere B after the equilibrium is reached as follows.

= 
= 82.714 nC
Thus, we can conclude that the charge on sphere B after equilibrium has been reached is 82.714 nC.
Answer:
The positive end of battery 1 touching the negative end of battery 2 and wires connecting the negative of battery 1 to the light light bulb and the positive of battery 2 to the light bulb.
Explanation:
To solve this problem it is necessary to apply the concepts related to frequency as a function of speed and wavelength as well as the kinematic equations of simple harmonic motion
From the definition we know that the frequency can be expressed as

Where,


Therefore the frequency would be given as


The frequency is directly proportional to the angular velocity therefore



Now the maximum speed from the simple harmonic movement is given by

Where
A = Amplitude
Then replacing,


Therefore the maximum speed of a point on the string is 3.59m/s
Answer:
Solenoid's inductance is 1.11 × 10^-8H
The average emf around the solenoid is 1.3 × 10^-5V
Explanation: Please see the attachments below