I am going to say velocity because you have the same amount of acceleration going in a certain direction.
Answer:
52.9 N, 364.7 N
Explanation:
First of all, we need to resolve both forces along the x- and y- direction. We have:
- Force A (178 N)

- Force B (259 N)

So the x- and y- component of the total force acting on the block are:

1. A wheelchair ramp. Instead of using lifting force on the wheelchair, You use push or pull force on it.
2. A slide. Instead of throwing down an item, It uses gravitational potential energy make an object "move" down the slide.
3.A screw. It's reducing the force by twisting the screw out of something instead of pulling it out. (Sorry about my bad grammar).
Continuous. Discrete values are values like 1, 2, 3, 4, etc. - they're values that are <em>distinct</em>, and typically there's some idea of a <em>next </em>and a <em>previous </em>value. When we're counting whole numbers, there's a definitive answer to which number comes after, and which number comes before. With continuous values, there's no real "next" or "last" value.
Motion is measured with <em>continuous </em>values; a train might move 300 yards in 1 minute, but we can look at smaller and smaller chunks of time to keep getting shorter and shorter distances. There is no <em />"next" distance the train moves after those 300 yards - it just doesn't make sense for there to be.
It's also measured <em>quantitatively</em>, not <em>qualitatively</em>. This just means that we can use numerical values to measure it, rather than other descriptors like color, smell, or taste.
Answer:
1923 N
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 65 Kg
Radius (r) = 2.5 m
Velocity (v) = 8.6 m/s
Centripetal force (F) =?
The centripetal force, F, can be obtained by using the following formula:
F = mv²/r
F = 65 × 8.6² / 2.5
F = 65 × 73.96 / 2.5
F = 4807.4 / 2.5
F = 1922.96 ≈ 1923 N
Thus, the magnitude of the centripetal's force acting on the student is approximately 1923 N