1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill [66]
3 years ago
5

Make 'r' the subject of the formula: v = 4

alt=" \pi " align="absmiddle" class="latex-formula">r²h

(Thanks!)
Mathematics
2 answers:
Vika [28.1K]3 years ago
5 0

v = 4π r²h is to be solved for r.


Divide both sides of this equation by 4π*h:


     v

--------- = r^2

   4π*h


Next, take the positive square root of both sides:


              v

r = √[----------- ]

           4π*h


You may leave this result as is, or proceed further:  Taking the + square root of 4 results in:

                      v

r = (1/2)√[----------- ]

                    π*h


earnstyle [38]3 years ago
5 0

V=4\pi r^2h\\\\ r^2=\dfrac{V}{4\pi h }\\\\ r=\sqrt{\dfrac{V}{4\pi h }}\\\\ r=\dfrac{\sqrt V}{\sqrt{4\pi h} }\\\\ r=\dfrac{\sqrt V}{2\sqrt{\pi h} }\\\\ r=\dfrac{\sqrt {\pi h V}}{2}\\\\

You might be interested in
A store sells four printers for every five computers. The store sells 40 computers on Saturday. How many printers did it sell on
aleksley [76]
32 printers were sold:
P:C
4:5
_:40
40/5=8
4x8=32

3 0
2 years ago
Answer step by step <br> please
Vanyuwa [196]

Answer:

the answer is D, because 30/2 is 15.

7 0
3 years ago
Read 2 more answers
How to solve this trig
n200080 [17]

Hi there!

To find the Trigonometric Equation, we have to isolate sin, cos, tan, etc. We are also given the interval [0,2π).

<u>F</u><u>i</u><u>r</u><u>s</u><u>t</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

What we have to do is to isolate cos first.

\displaystyle  \large{ cos \theta =  -  \frac{1}{2} }

Then find the reference angle. As we know cos(π/3) equals 1/2. Therefore π/3 is our reference angle.

Since we know that cos is negative in Q2 and Q3. We will be using π + (ref. angle) for Q3. and π - (ref. angle) for Q2.

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>2</u>

\displaystyle \large{ \pi -  \frac{ \pi}{3}  =  \frac{3 \pi}{3}  -  \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{2 \pi}{3} }

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi  +   \frac{ \pi}{3}  =  \frac{3 \pi}{3}   +   \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{4 \pi}{3} }</u>

Both values are apart of the interval. Hence,

\displaystyle \large \boxed{ \theta =  \frac{2 \pi}{3} , \frac{4 \pi}{3} }

<u>S</u><u>e</u><u>c</u><u>o</u><u>n</u><u>d</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

Isolate sin(4 theta).

\displaystyle \large{sin 4 \theta =  -  \frac{1}{ \sqrt{2} } }

Rationalize the denominator.

\displaystyle \large{sin4 \theta =  -  \frac{ \sqrt{2} }{2} }

The problem here is 4 beside theta. What we are going to do is to expand the interval.

\displaystyle \large{0 \leqslant  \theta < 2 \pi}

Multiply whole by 4.

\displaystyle \large{0 \times 4 \leqslant  \theta \times 4 < 2 \pi \times 4} \\  \displaystyle \large \boxed{0 \leqslant 4 \theta < 8 \pi}

Then find the reference angle.

We know that sin(π/4) = √2/2. Hence π/4 is our reference angle.

sin is negative in Q3 and Q4. We use π + (ref. angle) for Q3 and 2π - (ref. angle for Q4.)

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi +  \frac{ \pi}{4}  =  \frac{ 4 \pi}{4}  +  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{  \frac{5 \pi}{4} }</u>

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{2 \pi -  \frac{ \pi}{4}  =  \frac{8 \pi}{4}  -  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{ \frac{7 \pi}{4} }

Both values are in [0,2π). However, we exceed our interval to < 8π.

We will be using these following:-

\displaystyle \large{ \theta + 2 \pi k =  \theta \:  \:  \:  \:  \:  \sf{(k  \:  \: is \:  \: integer)}}

Hence:-

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>3</u>

\displaystyle \large{ \frac{5 \pi}{4}  + 2 \pi =  \frac{13 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 4\pi =  \frac{21 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 6\pi =  \frac{29 \pi}{4} }

We cannot use any further k-values (or k cannot be 4 or higher) because it'd be +8π and not in the interval.

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{ \frac{ 7 \pi}{4}  + 2 \pi =  \frac{15 \pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 4 \pi =  \frac{23\pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 6 \pi =  \frac{31 \pi}{4} }

Therefore:-

\displaystyle \large{4 \theta =  \frac{5 \pi}{4} , \frac{7 \pi}{4} , \frac{13\pi}{4} , \frac{21\pi}{4} , \frac{29\pi}{4}, \frac{15 \pi}{4} , \frac{23\pi}{4} , \frac{31\pi}{4}  }

Then we divide all these values by 4.

\displaystyle \large \boxed{\theta =  \frac{5 \pi}{16} , \frac{7 \pi}{16} , \frac{13\pi}{16} , \frac{21\pi}{16} , \frac{29\pi}{16}, \frac{15 \pi}{16} , \frac{23\pi}{16} , \frac{31\pi}{16}  }

Let me know if you have any questions!

3 0
3 years ago
Simplify 3[2^3 + (4-2)^3 - (6-2)^2]
Ivahew [28]

Answer:

\boxed{0}

.

Step-by-step explanation:

3(2^3 + (4 - 2)^3 - (6 - 2)^2)

= 3(2^3 + 2^3 - 4^2)

= 3(2.2^3 - (2^2)^2)

= 3(2^4 - 2^4)

= 3(0)

= 0

6 0
3 years ago
6.<br> Use the Change of Base Formula to evaluate log base 4 20
tatiyna

Answer:

The answer with calculator would be 2.16096

4 0
2 years ago
Other questions:
  • A lot of 100 semiconductor chips contains 15 that are defective. three chips are selected at random from the lot without replace
    12·1 answer
  • Y multiple 3 = 3/5 so y =
    7·2 answers
  • Which equation could be used to solve for the measure of angle P?
    11·2 answers
  • What’s this answer ????????
    10·2 answers
  • How does WiFi travel?
    11·2 answers
  • A bag contains 2 red, 5 blue, and 7 yellow marbles. Find the probability of drawing a yellow or a red.
    7·1 answer
  • When a drawing of a circle made in the center of a piece of paper with a black marker gets wet, the marker bleeds, and as the wa
    11·2 answers
  • What method works 100% of the time?
    10·1 answer
  • Which of the following terms correctly describe the object below?<br> Check all that apply.
    8·2 answers
  • Question#25<br> will give brainliest!
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!