Answer:
<em>The force required is 3,104 N</em>
Explanation:
<u>Force</u>
According to the second Newton's law, the net force exerted by an external agent on an object of mass m is:
F = ma
Where a is the acceleration of the object.
On the other hand, the equations of the Kinematics describe the motion of the object by the equation:

Where:
vf is the final speed
vo is the initial speed
a is the acceleration
t is the time
Solving for a:

We are given the initial speed as vo=20.4 m/s, the final speed as vf=0 (at rest), and the time taken to stop the car as t=7.4 s. The acceleration is:


The acceleration is negative because the car is braking (losing speed). Now compute the force exerted on the car of mass m=1,126 kg:

F= 3,104 N
The force required is 3,104 N
Answer:

Explanation:
Assuming the pith balls as point charges, we can calculate the repulsive force between them, using Coulomb's law:

We observe that the magnitude of the electric force is directly proportional to the product of the magnitude of both signed charges(
) and inversely proportional to the square of the distance(d) that separates them.
Replacing the given values, where k is the Coulomb constant:

For an object to be in equilibrium, it must be experiencing no acceleration. This means that both the net force and the net torque on the object must be zero.
Answer:
129900
Explanation:
Given that
Mass of the particle, m = 1 g = 1*10^-3 kg
Speed of the particle, u = ½c
Speed of light, c = 3*10^8
To solve this, we will use the formula
p = ymu, where
y = √[1 - (u²/c²)]
Let's solve for y, first. We have
y = √[1 - (1.5*10^8²/3*10^8²)]
y = √(1 - ½²)
y = √(1 - ¼)
y = √0.75
y = 0.8660, using our newly gotten y, we use it to solve the final equation
p = ymu
p = 0.866 * 1*10^-3 * 1.5*10^8
p = 129900 kgm/s
thus, we have found that the momentum of the particle is 129900 kgm/s