Answer:
W = 1884J
Explanation:
This question is incomplete. The original question was:
<em>Consider a motor that exerts a constant torque of 25.0 N.m to a horizontal platform whose moment of inertia is 50.0kg.m^2 . Assume that the platform is initially at rest and the torque is applied for 12.0rotations . Neglect friction.
</em>
<em>
How much work W does the motor do on the platform during this process? Enter your answer in joules to four significant figures.</em>
The amount of work done by the motor is given by:


Where I = 50kg.m^2 and ωo = rad/s. We need to calculate ωf.
By using kinematics:

But we don't have the acceleration yet. So, we have to calculate it by making a sum of torque:

=> 
Now we can calculate the final velocity:

Finally, we calculate the total work:

Since the question asked to "<em>Enter your answer in joules to four significant figures.</em>":
W = 1884J
We know, weight = mass * gravity
10 = m * 9.8
m = 10/9.8 = 1.02 Kg
Now, Let, the gravity of that planet = g'
g' = m/r² [m,r = mass & radius of that planet ]
g' = M/10 / (1/2R)² [M, R = mass & radius of Earth ]
g' = 4M / 10R²
g' = 2/5 * M/R²
g' = 2/5 * g
g' = 2/5 * 9.8
g' = 3.92
Weight on that planet = planet's gravity * mass
W' = 3.92 * 1.02
W' = 4 N
In short, Your Answer would be 4 Newtons
Hope this helps!
Answer:
1.5F
Explanation:
Using
E= F/q
Where F= force
E= electric field
q=charge
F= Eq
So if qis tripled and E is halved we have
F= (E/2)3q
F= 1.5Eq=>> 1.5F
Answer:
nuclear energy.............
To contrast inner and outer planets we will start with the climate of the planets and then move on to there lighting. To start the planets closet to the sun, mercury, venus, earth and mars, are all hot compared to the further one, jupiter, saturn, uranus, neptune. This distance also makes the farthe away planets darker than the ones closer. Now to compare all the planets vary from either gass or solid, rocky or icy. All of them spin around the sun and all have objects spinning around them, moons.